818 research outputs found

    Local feature extraction based facial emotion recognition: a survey

    Get PDF
    Notwithstanding the recent technological advancement, the identification of facial and emotional expressions is still one of the greatest challenges scientists have ever faced. Generally, the human face is identified as a composition made up of textures arranged in micro-patterns. Currently, there has been a tremendous increase in the use of local binary pattern based texture algorithms which have invariably been identified to being essential in the completion of a variety of tasks and in the extraction of essential attributes from an image. Over the years, lots of LBP variants have been literally reviewed. However, what is left is a thorough and comprehensive analysis of their independent performance. This research work aims at filling this gap by performing a large-scale performance evaluation of 46 recent state-of-the-art LBP variants for facial expression recognition. Extensive experimental results on the well-known challenging and benchmark KDEF, JAFFE, CK and MUG databases taken under different facial expression conditions, indicate that a number of evaluated state-of-the-art LBP-like methods achieve promising results, which are better or competitive than several recent state-of-the-art facial recognition systems. Recognition rates of 100%, 98.57%, 95.92% and 100% have been reached for CK, JAFFE, KDEF and MUG databases, respectively

    Signal processing and machine learning techniques for human verification based on finger textures

    Get PDF
    PhD ThesisIn recent years, Finger Textures (FTs) have attracted considerable attention as potential biometric characteristics. They can provide robust recognition performance as they have various human-speci c features, such as wrinkles and apparent lines distributed along the inner surface of all ngers. The main topic of this thesis is verifying people according to their unique FT patterns by exploiting signal processing and machine learning techniques. A Robust Finger Segmentation (RFS) method is rst proposed to isolate nger images from a hand area. It is able to detect the ngers as objects from a hand image. An e cient adaptive nger segmentation method is also suggested to address the problem of alignment variations in the hand image called the Adaptive and Robust Finger Segmentation (ARFS) method. A new Multi-scale Sobel Angles Local Binary Pattern (MSALBP) feature extraction method is proposed which combines the Sobel direction angles with the Multi-Scale Local Binary Pattern (MSLBP). Moreover, an enhanced method called the Enhanced Local Line Binary Pattern (ELLBP) is designed to e ciently analyse the FT patterns. As a result, a powerful human veri cation scheme based on nger Feature Level Fusion with a Probabilistic Neural Network (FLFPNN) is proposed. A multi-object fusion method, termed the Finger Contribution Fusion Neural Network (FCFNN), combines the contribution scores of the nger objects. The veri cation performances are examined in the case of missing FT areas. Consequently, to overcome nger regions which are poorly imaged a method is suggested to salvage missing FT elements by exploiting the information embedded within the trained Probabilistic Neural Network (PNN). Finally, a novel method to produce a Receiver Operating Characteristic (ROC) curve from a PNN is suggested. Furthermore, additional development to this method is applied to generate the ROC graph from the FCFNN. Three databases are employed for evaluation: The Hong Kong Polytechnic University Contact-free 3D/2D (PolyU3D2D), Indian Institute of Technology (IIT) Delhi and Spectral 460nm (S460) from the CASIA Multi-Spectral (CASIAMS) databases. Comparative simulation studies con rm the e ciency of the proposed methods for human veri cation. The main advantage of both segmentation approaches, the RFS and ARFS, is that they can collect all the FT features. The best results have been benchmarked for the ELLBP feature extraction with the FCFNN, where the best Equal Error Rate (EER) values for the three databases PolyU3D2D, IIT Delhi and CASIAMS (S460) have been achieved 0.11%, 1.35% and 0%, respectively. The proposed salvage approach for the missing feature elements has the capability to enhance the veri cation performance for the FLFPNN. Moreover, ROC graphs have been successively established from the PNN and FCFNN.the ministry of higher education and scientific research in Iraq (MOHESR); the Technical college of Mosul; the Iraqi Cultural Attach e; the active people in the MOHESR, who strongly supported Iraqi students

    Face Recognition with Facial Occlusion Based on Local Cycle Graph Structure Operator

    Get PDF
    Facial occlusion is a difficulty in the field of face recognition. The lack of features caused by occlusion may reduce the face recognition rate greatly. How to extract the identified features from the occluded faces has a profound effect on face recognition. This chapter presents a Local Cycle Graph Structure (LCGS) operator, which makes full use of the information of the pixels around the target pixel with its neighborhood of 3 × 3. Thus, the recognition with the extracted features is more efficient. We apply the extreme learning machine (ELM) classifier to train and test the features extracted by LCGS algorithm. In the experiment, we use the olivetti research laboratory (ORL) database to simulate occlusion randomly and use the AR database for physical occlusion. Physical coverings include scarves and sunglasses. Experimental results demonstrate that our algorithm yields a state-of-the-art performance

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Handbook of Vascular Biometrics

    Get PDF

    Palm Vein Verification Using Multiple Features and Locality Preserving Projections

    Get PDF
    Biometrics is defined as identifying people by their physiological characteristic, such as iris pattern, fingerprint, and face, or by some aspects of their behavior, such as voice, signature, and gesture. Considerable attention has been drawn on these issues during the last several decades. And many biometric systems for commercial applications have been successfully developed. Recently, the vein pattern biometric becomes increasingly attractive for its uniqueness, stability, and noninvasiveness. A vein pattern is the physical distribution structure of the blood vessels underneath a person’s skin. The palm vein pattern is very ganglion and it shows a huge number of vessels. The attitude of the palm vein vessels stays in the same location for the whole life and its pattern is definitely unique. In our work, the matching filter method is proposed for the palm vein image enhancement. New palm vein features extraction methods, global feature extracted based on wavelet coefficients and locality preserving projections (WLPP), and local feature based on local binary pattern variance and locality preserving projections (LBPV_LPP) have been proposed. Finally, the nearest neighbour matching method has been proposed that verified the test palm vein images. The experimental result shows that the EER to the proposed method is 0.1378%

    Handbook of Vascular Biometrics

    Get PDF
    This open access handbook provides the first comprehensive overview of biometrics exploiting the shape of human blood vessels for biometric recognition, i.e. vascular biometrics, including finger vein recognition, hand/palm vein recognition, retina recognition, and sclera recognition. After an introductory chapter summarizing the state of the art in and availability of commercial systems and open datasets/open source software, individual chapters focus on specific aspects of one of the biometric modalities, including questions of usability, security, and privacy. The book features contributions from both academia and major industrial manufacturers

    Biometric recognition based on the texture along palmprint lines

    Get PDF
    Tese de Mestrado Integrado. Bioengenharia. Faculdade de Engenharia. Universidade do Porto. 201

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others
    corecore