100 research outputs found

    Music Maker – A Camera-based Music Making Tool for Physical Rehabilitation

    Full text link
    The therapeutic effects of playing music are being recognized increasingly in the field of rehabilitation medicine. People with physical disabilities, however, often do not have the motor dexterity needed to play an instrument. We developed a camera-based human-computer interface called "Music Maker" to provide such people with a means to make music by performing therapeutic exercises. Music Maker uses computer vision techniques to convert the movements of a patient's body part, for example, a finger, hand, or foot, into musical and visual feedback using the open software platform EyesWeb. It can be adjusted to a patient's particular therapeutic needs and provides quantitative tools for monitoring the recovery process and assessing therapeutic outcomes. We tested the potential of Music Maker as a rehabilitation tool with six subjects who responded to or created music in various movement exercises. In these proof-of-concept experiments, Music Maker has performed reliably and shown its promise as a therapeutic device.National Science Foundation (IIS-0308213, IIS-039009, IIS-0093367, P200A01031, EIA-0202067 to M.B.); National Institutes of Health (DC-03663 to E.S.); Boston University (Dudley Allen Sargent Research Fund (to A.L.)

    Automated Analysis of Synchronization in Human Full-body Expressive Movement

    Get PDF
    The research presented in this thesis is focused on the creation of computational models for the study of human full-body movement in order to investigate human behavior and non-verbal communication. In particular, the research concerns the analysis of synchronization of expressive movements and gestures. Synchronization can be computed both on a single user (intra-personal), e.g., to measure the degree of coordination between the joints\u2019 velocities of a dancer, and on multiple users (inter-personal), e.g., to detect the level of coordination between multiple users in a group. The thesis, through a set of experiments and results, contributes to the investigation of both intra-personal and inter-personal synchronization applied to support the study of movement expressivity, and improve the state-of-art of the available methods by presenting a new algorithm to perform the analysis of synchronization

    Acoustic localization of tactile interactions for the development of novel tangible interfaces

    Get PDF
    In this paper we propose different acoustic array processing methods for the localization of tactile interactions with planar surfaces. The aim is to create a new class of tangible interfaces for musical performance that can be obtained by simply applying sensors on existing surfaces. The solutions considered in this paper are mainly based on the measurement and the analysis of the Time-Delay-Of-Arrival (TDOA) over a set of contact sensors, placed around the area of potential contact, and allows us to rapidly localize tactile interactions with reasonable accuracy

    Multisensory learning in adaptive interactive systems

    Get PDF
    The main purpose of my work is to investigate multisensory perceptual learning and sensory integration in the design and development of adaptive user interfaces for educational purposes. To this aim, starting from renewed understanding from neuroscience and cognitive science on multisensory perceptual learning and sensory integration, I developed a theoretical computational model for designing multimodal learning technologies that take into account these results. Main theoretical foundations of my research are multisensory perceptual learning theories and the research on sensory processing and integration, embodied cognition theories, computational models of non-verbal and emotion communication in full-body movement, and human-computer interaction models. Finally, a computational model was applied in two case studies, based on two EU ICT-H2020 Projects, "weDRAW" and "TELMI", on which I worked during the PhD

    Towards a multimodal repository of expressive movement qualities in dance

    Get PDF
    In this paper, we present a new multimodal repository for the analysis of expressive movement qualities in dance. First, we discuss guidelines and methodology that we applied to create this repository. Next, the technical setup of recordings and the platform for capturing the synchronized audio-visual, physiological, and motion capture data are presented. The initial content of the repository consists of about 90 minutes of short dance performances movement sequences, and improvisations performed by four dancers, displaying three expressive qualities: Fluidity, Impulsivity, and Rigidity

    Analysis of movement quality in full-body physical activities

    Get PDF
    Full-body human movement is characterized by fine-grain expressive qualities that humans are easily capable of exhibiting and recognizing in others' movement. In sports (e.g., martial arts) and performing arts (e.g., dance), the same sequence of movements can be performed in a wide range of ways characterized by different qualities, often in terms of subtle (spatial and temporal) perturbations of the movement. Even a non-expert observer can distinguish between a top-level and average performance by a dancer or martial artist. The difference is not in the performed movements-the same in both cases-but in the \u201cquality\u201d of their performance. In this article, we present a computational framework aimed at an automated approximate measure of movement quality in full-body physical activities. Starting from motion capture data, the framework computes low-level (e.g., a limb velocity) and high-level (e.g., synchronization between different limbs) movement features. Then, this vector of features is integrated to compute a value aimed at providing a quantitative assessment of movement quality approximating the evaluation that an external expert observer would give of the same sequence of movements. Next, a system representing a concrete implementation of the framework is proposed. Karate is adopted as a testbed. We selected two different katas (i.e., detailed choreographies of movements in karate) characterized by different overall attitudes and expressions (aggressiveness, meditation), and we asked seven athletes, having various levels of experience and age, to perform them. Motion capture data were collected from the performances and were analyzed with the system. The results of the automated analysis were compared with the scores given by 14 karate experts who rated the same performances. Results show that the movement-quality scores computed by the system and the ratings given by the human observers are highly correlated (Pearson's correlations r = 0.84, p = 0.001 and r = 0.75, p = 0.005)

    Enhancing the use of Haptic Devices in Education and Entertainment

    Get PDF
    This research was part of the two-years Horizon 2020 European Project "weDRAW". The aim of the project was that "specific sensory systems have specific roles to learn specific concepts". This work explores the use of the haptic modality, stimulated by the means of force-feedback devices, to convey abstract concepts inside virtual reality. After a review of the current use of haptic devices in education, available haptic software and game engines, we focus on the implementation of an haptic plugin for game engines (HPGE, based on state of the art rendering library CHAI3D) and its evaluation in human perception experiments and multisensory integration
    corecore