16 research outputs found

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    On the Significance of Distance in Machine Learning

    Get PDF
    Avstandsbegrepet er grunnleggende i maskinlæring. Hvordan vi velger å måle avstand har betydning, men det er ofte utfordrende å finne et passende avstandsmål. Metrisk læring kan brukes til å lære funksjoner som implementerer avstand eller avstandslignende mål. Vanlige dyplæringsmodeller er sårbare for modifikasjoner av input som har til hensikt å lure modellen (adversarial examples, motstridende eksempler). Konstruksjon av modeller som er robuste mot denne typen angrep er av stor betydning for å kunne utnytte maskinlæringsmodeller i større skala, og et passende avstandsmål kan brukes til å studere slik motstandsdyktighet. Ofte eksisterer det hierarkiske relasjoner blant klasser, og disse relasjonene kan da representeres av den hierarkiske avstanden til klasser. I klassifiseringsproblemer som må ta i betraktning disse klasserelasjonene, kan hierarkiinformert klassifisering brukes. Jeg har utviklet en metode kalt /distance-ratio/-basert (DR) metrisk læring. I motsetning til den formuleringen som normalt anvendes har DR-formuleringen to gunstige egenskaper. For det første er det skala-invariant med hensyn til rommet det projiseres til. For det andre har optimale klassekonfidensverdier på klasserepresentantene. Dersom rommet for å konstruere modifikasjoner er tilstrekklig stort, vil man med standard adversarial accuracy (SAA, standard motstridende nøyaktighet) risikere at naturlige datapunkter blir betraktet som motstridende eksempler. Dette kan være en årsak til SAA ofte går på bekostning av nøyaktighet. For å løse dette problemet har jeg utviklet en ny definisjon på motstridende nøyaktighet kalt Voronoi-epsilon adversarial accuracy (VAA, Voronoi-epsilon motstridende nøyaktighet). VAA utvider studiet av lokal robusthet til global robusthet. Klassehierarkisk informasjon er ikke tilgjengelig for alle datasett. For å håndtere denne utfordringen har jeg undersøkt om klassifikasjonsbaserte metriske læringsmodeller kan brukes til å utlede klassehierarkiet. Videre har jeg undersøkt de mulige effektene av robusthet på feature space (egenskapsrom). Jeg fant da at avstandsstrukturen til et egenskapsrom trent for robusthet har større likhet med avstandsstrukturen i rådata enn et egenskapsrom trent uten robusthet.The notion of distance is fundamental in machine learning. The choice of distance matters, but it is often challenging to find an appropriate distance. Metric learning can be used for learning distance(-like) functions. Common deep learning models are vulnerable to the adversarial modification of inputs. Devising adversarially robust models is of immense importance for the wide deployment of machine learning models, and distance can be used for the study of adversarial robustness. Often, hierarchical relationships exist among classes, and these relationships can be represented by the hierarchical distance of classes. For classification problems that must take these class relationships into account, hierarchy-informed classification can be used. I propose distance-ratio-based (DR) formulation for metric learning. In contrast to the commonly used formulation, DR formulation has two favorable properties. First, it is invariant of the scale of an embedding. Secondly, it has optimal class confidence values on class representatives. For a large perturbation budget, standard adversarial accuracy (SAA) allows natural data points to be considered as adversarial examples. This could be a reason for the tradeoff between accuracy and SAA. To resolve the issue, I proposed a new definition of adversarial accuracy named Voronoi-epsilon adversarial accuracy (VAA). VAA extends the study of local robustness to global robustness. Class hierarchical information is not available for all datasets. To handle this challenge, I investigated whether classification-based metric learning models can be used to infer class hierarchy. Furthermore, I explored the possible effects of adversarial robustness on feature space. I found that the distance structure of robustly trained feature space resembles that of input space to a greater extent than does standard trained feature space.Doktorgradsavhandlin

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum

    Data for: Fine-Grained Visual Categorization of Butterfly Specimens at Sub-species Level Via a Convolutional Neural Network with skip-connections

    No full text
    For performance evaluation, a total of 24,836 images of butterfly specimen spanning 56 sub-species were acquired as benchmark dataset for their strong similarity with subordinate categories. The camera used is Canon EOS 5D Mark IV and the shooting distance was three to seven cm depending on the worm size. The image format was JPEG and each one was a 24-bit color bitmap. Each image was classified into one corresponding ground truth category with the help of entomology experts. It is an interesting but challenging dataset for performance verification of fine-grained visual categorization of butterfly specimens.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Personality Identification from Social Media Using Deep Learning: A Review

    Get PDF
    Social media helps in sharing of ideas and information among people scattered around the world and thus helps in creating communities, groups, and virtual networks. Identification of personality is significant in many types of applications such as in detecting the mental state or character of a person, predicting job satisfaction, professional and personal relationship success, in recommendation systems. Personality is also an important factor to determine individual variation in thoughts, feelings, and conduct systems. According to the survey of Global social media research in 2018, approximately 3.196 billion social media users are in worldwide. The numbers are estimated to grow rapidly further with the use of mobile smart devices and advancement in technology. Support vector machine (SVM), Naive Bayes (NB), Multilayer perceptron neural network, and convolutional neural network (CNN) are some of the machine learning techniques used for personality identification in the literature review. This paper presents various studies conducted in identifying the personality of social media users with the help of machine learning approaches and the recent studies that targeted to predict the personality of online social media (OSM) users are reviewed

    Data for: Fine-Grained Visual Categorization of Butterfly Specimens at Sub-species Level Via a Convolutional Neural Network with skip-connections

    No full text
    For performance evaluation, a total of 24,836 images of butterfly specimen spanning 56 sub-species were acquired as benchmark dataset for their strong similarity with subordinate categories. The camera used is Canon EOS 5D Mark IV and the shooting distance was three to seven cm depending on the worm size. The image format was JPEG and each one was a 24-bit color bitmap. Each image was classified into one corresponding ground truth category with the help of entomology experts. It is an interesting but challenging dataset for performance verification of fine-grained visual categorization of butterfly specimens

    12th International Conference on Geographic Information Science: GIScience 2023, September 12–15, 2023, Leeds, UK

    Get PDF
    No abstract available

    2018 EURēCA Abstract Book

    Get PDF
    Listing of student participant abstracts

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore