545 research outputs found

    Optimizing I/O for Big Array Analytics

    Full text link
    Big array analytics is becoming indispensable in answering important scientific and business questions. Most analysis tasks consist of multiple steps, each making one or multiple passes over the arrays to be analyzed and generating intermediate results. In the big data setting, I/O optimization is a key to efficient analytics. In this paper, we develop a framework and techniques for capturing a broad range of analysis tasks expressible in nested-loop forms, representing them in a declarative way, and optimizing their I/O by identifying sharing opportunities. Experiment results show that our optimizer is capable of finding execution plans that exploit nontrivial I/O sharing opportunities with significant savings.Comment: VLDB201

    Transformations of High-Level Synthesis Codes for High-Performance Computing

    Full text link
    Specialized hardware architectures promise a major step in performance and energy efficiency over the traditional load/store devices currently employed in large scale computing systems. The adoption of high-level synthesis (HLS) from languages such as C/C++ and OpenCL has greatly increased programmer productivity when designing for such platforms. While this has enabled a wider audience to target specialized hardware, the optimization principles known from traditional software design are no longer sufficient to implement high-performance codes. Fast and efficient codes for reconfigurable platforms are thus still challenging to design. To alleviate this, we present a set of optimizing transformations for HLS, targeting scalable and efficient architectures for high-performance computing (HPC) applications. Our work provides a toolbox for developers, where we systematically identify classes of transformations, the characteristics of their effect on the HLS code and the resulting hardware (e.g., increases data reuse or resource consumption), and the objectives that each transformation can target (e.g., resolve interface contention, or increase parallelism). We show how these can be used to efficiently exploit pipelining, on-chip distributed fast memory, and on-chip streaming dataflow, allowing for massively parallel architectures. To quantify the effect of our transformations, we use them to optimize a set of throughput-oriented FPGA kernels, demonstrating that our enhancements are sufficient to scale up parallelism within the hardware constraints. With the transformations covered, we hope to establish a common framework for performance engineers, compiler developers, and hardware developers, to tap into the performance potential offered by specialized hardware architectures using HLS

    Dynamically allocating sets of fine-grained processors to running computations

    Get PDF
    Researchers explore an approach to using general purpose parallel computers which involves mapping hardware resources onto computations instead of mapping computations onto hardware. Problems such as processor allocation, task scheduling and load balancing, which have traditionally proven to be challenging, change significantly under this approach and may become amenable to new attacks. Researchers describe the implementation of this approach used by the FFP Machine whose computation and communication resources are repeatedly partitioned into disjoint groups that match the needs of available tasks from moment to moment. Several consequences of this system are examined

    Comparison of high level design methodologies for algorithmic IPs : Bluespec and C-based synthesis

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (leaves 37-39).High level hardware design of Digital Signal Processing algorithms is an important design problem for decreasing design time and allowing more algorithmic exploration. Bluespec is a Hardware Design Language (HDL) that allows designers to express intended microarchitecture through high-level constructs. C-based design tools directly generate hardware from algorithms expressed in C/C++. This research compares these two design methodologies in developing hardware for Reed-Solomon decoding algorithm under area and performance metrics. This work illustrates that C-based design flow may be effective in early stages of the design development for fast prototyping. However, the Bluespec design flow produces hardware that is more customized for performance and resource constraints. This is because in later stages, designers need to have close control over the hardware structure generated that is a part of HDLs like Bluespec, but is difficult to express under the constraints of sequential C semantics.by Abhinav Agarwal.S.M

    Computation Enhancement using Reconfigurable Computing

    Get PDF
    In light of the industry’s constant need for better computer performance, this project aims to choose and evaluate an approach for facing this issue. The targeted category of computers is single board computers (e.g. Raspberry Pi). The approach utilized for enhancing performance is the use of reconfigurable computing as to execute computationally expensive calculations on a runtime custom-tailored hardware. The objective of this project is the test of the potential this approach has for increasing computers performance through comparing a software implementation of an algorithm with an FPGA assisted implementation of the same algorithm. The platforms chosen for this project are the Rapsberry Pi and the Parallella P1602 board with its Zynq SoC for the software implementation and the FPGA assisted implementation in that order. The chosen algorithm is Fourier Fast Transform due to its part in many DSP applications and its suitability for the project objective. While the software solution worked successfully resulting in an asymptotic cost of O(N log N); the reconfigurable computing solution couldn’t be completed due to time constraints and lack of experience of the student. Future work should complete the experiment and add a multicore implementation of the same algorithm to add yet another class to the comparison
    • …
    corecore