37 research outputs found

    Optimization of the Bugs Classification of the Ticketing System in Software Development: a Study Case

    Full text link
    Computer bug elimination is an important phase in the software development process. A ticketing system is usually used to classify the identified bug type and to assign a suitable developer. This system is handled manually and error prone. This paper proposes a new bug classification method using the fast string search algorithm. The method searches the error string and compares it to the full text. The approach is deployed to the software development process at PT. Selaras Anugerah Lestari and it results in a significant reduction in the average value of the time required to handle the bugs

    A multi-label, dual-output deep neural network for automated bug triaging

    Full text link
    Bug tracking enables the monitoring and resolution of issues and bugs within organizations. Bug triaging, or assigning bugs to the owner(s) who will resolve them, is a critical component of this process because there are many incorrect assignments that waste developer time and reduce bug resolution throughput. In this work, we explore the use of a novel two-output deep neural network architecture (Dual DNN) for triaging a bug to both an individual team and developer, simultaneously. Dual DNN leverages this simultaneous prediction by exploiting its own guess of the team classes to aid in developer assignment. A multi-label classification approach is used for each of the two outputs to learn from all interim owners, not just the last one who closed the bug. We make use of a heuristic combination of the interim owners (owner-importance-weighted labeling) which is converted into a probability mass function (pmf). We employ a two-stage learning scheme, whereby the team portion of the model is trained first and then held static to train the team--developer and bug--developer relationships. The scheme employed to encode the team--developer relationships is based on an organizational chart (org chart), which renders the model robust to organizational changes as it can adapt to role changes within an organization. There is an observed average lift (with respect to both team and developer assignment) of 13%-points in 11-fold incremental-learning cross-validation (IL-CV) accuracy for Dual DNN utilizing owner-weighted labels compared with the traditional multi-class classification approach. Furthermore, Dual DNN with owner-weighted labels achieves average 11-fold IL-CV accuracies of 76% (team assignment) and 55% (developer assignment), outperforming reference models by 14%- and 25%-points, respectively, on a proprietary dataset with 236,865 entries.Comment: 8 pages, 2 figures, 9 table

    Fuzzy set and cache-based approach for bug triaging

    Get PDF
    Software bugs are inevitable and bug fixing is an essential and costly phase during software development. Such defects are often reported in bug reports which are stored in an issue tracking system, or bug repository. Such reports need to be assigned to the most appropriate developers who will eventually fix the issue/bug reported. This process is often called Bug Triaging. Manual bug triaging is a difficult, expensive, and lengthy process, since it needs the bug triager to manually read, analyze, and assign bug fixers for each newly reported bug. Triagers can become overwhelmed by the number of reports added to the repository. Time and efforts spent into triaging typically diverts valuable resources away from the improvement of the product to the managing of the development process. To assist triagers and improve the bug triaging efficiency and reduce its cost, this thesis proposes Bugzie, a novel approach for automatic bug triaging based on fuzzy set and cachebased modeling of the bug-fixing capability of developers. Our evaluation results on seven large-scale subject systems show that Bugzie achieves significantly higher levels of efficiency and correctness than existing state-of-the-art approaches. In these subject projects, Bugzie\u27s accuracy for top-1 and top-5 recommendations is higher than those of the second best approach from 4-15% and 6-31%, respectively as Bugzie\u27s top-1 and top-5 recommendation accuracy is generally in the range of 31-51% and 70-83%, respectively. Importantly, existing approaches take from hours to days (even almost a month) to finish training as well as predicting, while in Bugzie, training time is from tens of minutes to an hour

    Effective Bug Triage based on Historical Bug-Fix Information

    Get PDF
    International audienceFor complex and popular software, project teams could receive a large number of bug reports. It is often tedious and costly to manually assign these bug reports to developers who have the expertise to fix the bugs. Many bug triage techniques have been proposed to automate this process. In this pa-per, we describe our study on applying conventional bug triage techniques to projects of different sizes. We find that the effectiveness of a bug triage technique largely depends on the size of a project team (measured in terms of the number of developers). The conventional bug triage methods become less effective when the number of developers increases. To further improve the effectiveness of bug triage for large projects, we propose a novel recommendation method called BugFixer, which recommends developers for a new bug report based on historical bug-fix in-formation. BugFixer constructs a Developer-Component-Bug (DCB) network, which models the relationship between developers and source code components, as well as the relationship be-tween the components and their associated bugs. A DCB network captures the knowledge of "who fixed what, where". For a new bug report, BugFixer uses a DCB network to recommend to triager a list of suitable developers who could fix this bug. We evaluate BugFixer on three large-scale open source projects and two smaller industrial projects. The experimental results show that the proposed method outperforms the existing methods for large projects and achieves comparable performance for small projects
    corecore