263 research outputs found

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    A Brief Tour through Provenance in Scientific Workflows and Databases

    Get PDF
    Within computer science, the term provenance has multiple meanings, due to different motivations, perspectives, and assumptions prevalent in the respective communities. This chapter provides a high-level “sightseeing tour” of some of those different notions and uses of provenance in scientific workflows and databases.Ope

    A policy language definition for provenance in pervasive computing

    Get PDF
    Recent advances in computing technology have led to the paradigm of pervasive computing, which provides a means of simplifying daily life by integrating information processing into the everyday physical world. Pervasive computing draws its power from knowing the surroundings and creates an environment which combines computing and communication capabilities. Sensors that provide high-resolution spatial and instant measurement are most commonly used for forecasting, monitoring and real-time environmental modelling. Sensor data generated by a sensor network depends on several influences, such as the configuration and location of the sensors or the processing performed on the raw measurements. Storing sufficient metadata that gives meaning to the recorded observation is important in order to draw accurate conclusions or to enhance the reliability of the result dataset that uses this automatically collected data. This kind of metadata is called provenance data, as the origin of the data and the process by which it arrived from its origin are recorded. Provenance is still an exploratory field in pervasive computing and many open research questions are yet to emerge. The context information and the different characteristics of the pervasive environment call for different approaches to a provenance support system. This work implements a policy language definition that specifies the collecting model for provenance management systems and addresses the challenges that arise with stream data and sensor environments. The structure graph of the proposed model is mapped to the Open Provenance Model in order to facilitating the sharing of provenance data and interoperability with other systems. As provenance security has been recognized as one of the most important components in any provenance system, an access control language has been developed that is tailored to support the special requirements of provenance: fine-grained polices, privacy policies and preferences. Experimental evaluation findings show a reasonable overhead for provenance collecting and a reasonable time for provenance query performance, while a numerical analysis was used to evaluate the storage overhead

    Workflow Provenance: from Modeling to Reporting

    Get PDF
    Workflow provenance is a crucial part of a workflow system as it enables data lineage analysis, error tracking, workflow monitoring, usage pattern discovery, and so on. Integrating provenance into a workflow system or modifying a workflow system to capture or analyze different provenance information is burdensome, requiring extensive development because provenance mechanisms rely heavily on the modelling, architecture, and design of the workflow system. Various tools and technologies exist for logging events in a software system. Unfortunately, logging tools and technologies are not designed for capturing and analyzing provenance information. Workflow provenance is not only about logging, but also about retrieving workflow related information from logs. In this work, we propose a taxonomy of provenance questions and guided by these questions, we created a workflow programming model 'ProvMod' with a supporting run-time library to provide automated provenance and log analysis for any workflow system. The design and provenance mechanism of ProvMod is based on recommendations from prominent research and is easy to integrate into any workflow system. ProvMod offers Neo4j graph database support to manage semi-structured heterogeneous JSON logs. The log structure is adaptable to any NoSQL technology. For each provenance question in our taxonomy, ProvMod provides the answer with data visualization using Neo4j and the ELK Stack. Besides analyzing performance from various angles, we demonstrate the ease of integration by integrating ProvMod with Apache Taverna and evaluate ProvMod usability by engaging users. Finally, we present two Software Engineering research cases (clone detection and architecture extraction) where our proposed model ProvMod and provenance questions taxonomy can be applied to discover meaningful insights

    Scalable And Secure Provenance Querying For Scientific Workflows And Its Application In Autism Study

    Get PDF
    In the era of big data, scientific workflows have become essential to automate scientific experiments and guarantee repeatability. As both data and workflow increase in their scale, requirements for having a data lineage management system commensurate with the complexity of the workflow also become necessary, calling for new scalable storage, query, and analytics infrastructure. This system that manages and preserves the derivation history and morphosis of data, known as provenance system, is essential for maintaining quality and trustworthiness of data products and ensuring reproducibility of scientific discoveries. With a flurry of research and increased adoption of scientific workflows in processing sensitive data, i.e., health and medication domain, securing information flow and instrumenting access privileges in the system have become a fundamental precursor to deploying large-scale scientific workflows. That has become more important now since today team of scientists around the world can collaborate on experiments using globally distributed sensitive data sources. Hence, it has become imperative to augment scientific workflow systems as well as the underlying provenance management systems with data security protocols. Provenance systems, void of data security protocol, are susceptible to vulnerability. In this dissertation research, we delineate how scientific workflows can improve therapeutic practices in autism spectrum disorders. The data-intensive computation inherent in these workflows and sensitive nature of the data, necessitate support for scalable, parallel and robust provenance queries and secured view of data. With that in perspective, we propose OPQLPigOPQL^{Pig}, a parallel, robust, reliable and scalable provenance query language and introduce the concept of access privilege inheritance in the provenance systems. We characterize desirable properties of role-based access control protocol in scientific workflows and demonstrate how the qualities are integrated into the workflow provenance systems as well. Finally, we describe how these concepts fit within the DATAVIEW workflow management system
    • …
    corecore