69 research outputs found

    Fine-grained Lower Bounds on Cops and Robbers

    Get PDF
    Cops and Robbers is a classic pursuit-evasion game played between a group of g cops and one robber on an undirected N-vertex graph G. We prove that the complexity of deciding the winner in the game under optimal play requires Omega (N^{g-o(1)}) time on instances with O(N log^2 N) edges, conditioned on the Strong Exponential Time Hypothesis. Moreover, the problem of calculating the minimum number of cops needed to win the game is 2^{Omega (sqrt{N})}, conditioned on the weaker Exponential Time Hypothesis. Our conditional lower bound comes very close to a conditional upper bound: if Meyniel\u27s conjecture holds then the cop number can be decided in 2^{O(sqrt{N}log N)} time. In recent years, the Strong Exponential Time Hypothesis has been used to obtain many lower bounds on classic combinatorial problems, such as graph diameter, LCS, EDIT-DISTANCE, and REGEXP matching. To our knowledge, these are the first conditional (S)ETH-hard lower bounds on a strategic game

    On the Cop Number of String Graphs

    Get PDF
    Cops and Robber is a well-studied two-player pursuit-evasion game played on a graph, where a group of cops tries to capture the robber. The cop number of a graph is the minimum number of cops required to capture the robber. We show that the cop number of a string graph is at most 13, improving upon a result of Gaven?iak et al. [Eur. J. of Comb. 72, 45-69 (2018)]. Using similar techniques, we also show that four cops have a winning strategy for a variant of Cops and Robber, named Fully Active Cops and Robber, on planar graphs, addressing an open question of Gromovikov et al. [Austr. J. Comb. 76(2), 248-265 (2020)]

    Parameterized Analysis of the Cops and Robber Game

    Get PDF
    Pursuit-evasion games have been intensively studied for several decades due to their numerous applications in artificial intelligence, robot motion planning, database theory, distributed computing, and algorithmic theory. Cops and Robber (CnR) is one of the most well-known pursuit-evasion games played on graphs, where multiple cops pursue a single robber. The aim is to compute the cop number of a graph, k, which is the minimum number of cops that ensures the capture of the robber. From the viewpoint of parameterized complexity, CnR is W[2]-hard parameterized by k [Fomin et al., TCS, 2010]. Thus, we study structural parameters of the input graph. We begin with the vertex cover number (vcn). First, we establish that k ? vcn/3+1. Second, we prove that CnR parameterized by vcn is FPT by designing an exponential kernel. We complement this result by showing that it is unlikely for CnR parameterized by vcn to admit a polynomial compression. We extend our exponential kernels to the parameters cluster vertex deletion number and deletion to stars number, and design a linear vertex kernel for neighborhood diversity. Additionally, we extend all of our results to several well-studied variations of CnR

    LIPIcs, Volume 248, ISAAC 2022, Complete Volume

    Get PDF
    LIPIcs, Volume 248, ISAAC 2022, Complete Volum

    Fully polynomial FPT algorithms for some classes of bounded clique-width graphs

    Get PDF
    Parameterized complexity theory has enabled a refined classification of the difficulty of NP-hard optimization problems on graphs with respect to key structural properties, and so to a better understanding of their true difficulties. More recently, hardness results for problems in P were achieved using reasonable complexity theoretic assumptions such as: Strong Exponential Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to these assumptions, many graph theoretic problems do not admit truly subquadratic algorithms, nor even truly subcubic algorithms (Williams and Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central technique used to tackle the difficulty of the above mentioned problems is fixed-parameter algorithms for polynomial-time problems with polynomial dependency in the fixed parameter (P-FPT). This technique was introduced by Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016) and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this technique to clique-width, another important graph parameter, remained to be done. In this paper we study several graph theoretic problems for which hardness results exist such as cycle problems (triangle detection, triangle counting, girth, diameter), distance problems (diameter, eccentricities, Gromov hyperbolicity, betweenness centrality) and maximum matching. We provide hardness results and fully polynomial FPT algorithms, using clique-width and some of its upper-bounds as parameters (split-width, modular-width and P_4P\_4-sparseness). We believe that our most important result is an O(k4â‹…n+m){\cal O}(k^4 \cdot n + m)-time algorithm for computing a maximum matching where kk is either the modular-width or the P_4P\_4-sparseness. The latter generalizes many algorithms that have been introduced so far for specific subclasses such as cographs, P_4P\_4-lite graphs, P_4P\_4-extendible graphs and P_4P\_4-tidy graphs. Our algorithms are based on preprocessing methods using modular decomposition, split decomposition and primeval decomposition. Thus they can also be generalized to some graph classes with unbounded clique-width

    The authentic punk: an ethnography of DIY music ethics

    Get PDF
    This thesis examines how select participants came to be involved in DiY punk culture, what they do in it, and how, if they do, they exit from the culture. Underpinning this will be an ethnographic examination of how the ethics of punk informs their views of remaining authentic and what they consider to be a sell out and betrayal of these values. I illustrate how such ethics have evolved and how they inform the daily practice of two chosen DiY punk communities in Leeds and Bradford. I show how these communities reciprocally relate to each other. I ask such questions as what do the participants get out of what is often experienced as hard work and toil, particularly where it is fraught with a series of dilemmas bound up in politics, ethics, identity and integrity. I offer a grounded theory of how and what ways those involved in DiY punk authenticate themselves in their actions. This will demonstrate how and, more importantly, why DiY punks distinguish their ethical version of punk over and above what are taken as less favourable forms of punk. What happens if previous passionately held DiY beliefs are surrendered? Severe consequences follow should a participant sell out. I present an account of these and suggest that what they involve is not the clear-cut question that is sometimes assumed, either sincerely or selfrighteously

    Dagstuhl News January - December 2011

    Get PDF
    "Dagstuhl News" is a publication edited especially for the members of the Foundation "Informatikzentrum Schloss Dagstuhl" to thank them for their support. The News give a summary of the scientific work being done in Dagstuhl. Each Dagstuhl Seminar is presented by a small abstract describing the contents and scientific highlights of the seminar as well as the perspectives or challenges of the research topic

    Organising new neighbourhoods

    Get PDF
    • …
    corecore