239 research outputs found

    A Survey of Techniques For Improving Energy Efficiency in Embedded Computing Systems

    Full text link
    Recent technological advances have greatly improved the performance and features of embedded systems. With the number of just mobile devices now reaching nearly equal to the population of earth, embedded systems have truly become ubiquitous. These trends, however, have also made the task of managing their power consumption extremely challenging. In recent years, several techniques have been proposed to address this issue. In this paper, we survey the techniques for managing power consumption of embedded systems. We discuss the need of power management and provide a classification of the techniques on several important parameters to highlight their similarities and differences. This paper is intended to help the researchers and application-developers in gaining insights into the working of power management techniques and designing even more efficient high-performance embedded systems of tomorrow

    Hierarchical Agent-based Adaptation for Self-Aware Embedded Computing Systems

    Get PDF
    Siirretty Doriast

    An FPGA-based infrastructure for fine-grained DVFS analysis in high-performance embedded systems

    Get PDF
    Emerging technologies provide SoCs with fine-grained DVFS capabilities both in space (number of domains) and time (transients in the order of tens of nanoseconds). Analyzing these systems requires cycle-accurate accounting of rapidly-changing dynamics and complex interactions among accelerators, interconnect, memory, and OS. We present an FPGA-based infrastructure that facilitates such analyses for high-performance embedded systems. We show how our infrastructure can be used to first generate SoCs with loosely-coupled accelerators, and then perform design-space exploration considering several DVFS policies under full-system workload scenarios, sweeping spatial and temporal domain granularity

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system

    Fine-grained Energy and Thermal Management using Real-time Power Sensors

    Get PDF
    With extensive use of battery powered devices such as smartphones, laptops an
    • …
    corecore