342 research outputs found

    Dynamic scene understanding: Pedestrian tracking from aerial devices.

    Get PDF
    Multiple Object Tracking (MOT) is the problem that involves following the trajectory of multiple objects in a sequence, generally a video. Pedestrians are among the most interesting subjects to track and recognize for many purposes such as surveillance, and safety. In the recent years, Unmanned Aerial Vehicles (UAV’s) have been viewed as a viable option for monitoring public areas, as they provide a low-cost method of data collection while covering large and difficult-to-reach areas. In this thesis, we present an online pedestrian tracking and re-identification from aerial devices framework. This framework is based on learning a compact directional statistic distribution (von-Mises-Fisher distribution) for each person ID using a deep convolutional neural network. The distribution characteristics are trained to be invariant to clothes appearances and to transformations. In real world scenarios, during deployment, new pedestrian and objects can appear in the scene and the model should detect them as Out Of Distribution (OOD). Thus, our frameworks also includes an OOD detection adopted from [16] called Virtual Outlier Synthetic (VOS), that detects OOD based on synthesising virtual outlier in the embedding space in an online manner. To validate, analyze and compare our approach, we use a large real benchmark data that contain detection tracking and identity annotations. These targets are captured at different viewing angles, different places, and different times by a ”DJI Phantom 4” drone. We validate the effectiveness of the proposed framework by evaluating their detection, tracking and long term identification performance as well as classification performance between In Distribution (ID) and OOD. We show that the the proposed methods in the framework can learn models that achieve their objectives

    Technology in conservation: towards a system for in-field drone detection of invasive vegetation

    Get PDF
    Remote sensing can assist in monitoring the spread of invasive vegetation. The adoption of camera-carrying unmanned aerial vehicles, commonly referred to as drones, as remote sensing tools has yielded images of higher spatial resolution than traditional techniques. Drones also have the potential to interact with the environment through the delivery of bio-control or herbicide, as seen with their adoption in precision agriculture. Unlike in agricultural applications, however, invasive plants do not have a predictable position relative to each other within the environment. To facilitate the adoption of drones as an environmental monitoring and management tool, drones need to be able to intelligently distinguish between invasive and non-invasive vegetation on the fly. In this thesis, we present the augmentation of a commercially available drone with a deep machine learning model to investigate the viability of differentiating between an invasive shrub and other vegetation. As a case study, this was applied to the shrub genus Hakea, originating in Australia and invasive in several countries including South Africa. However, for this research, the methodology is important, rather than the chosen target plant. A dataset was collected using the available drone and manually annotated to facilitate the supervised training of the model. Two approaches were explored, namely, classification and semantic segmentation. For each of these, several models were trained and evaluated to find the optimal one. The chosen model was then interfaced with the drone via an Android application on a mobile device and its performance was preliminarily evaluated in the field. Based on these findings, refinements were made and thereafter a thorough field evaluation was performed to determine the best conditions for model operation. Results from the classification task show that deep learning models are capable of distinguishing between target and other shrubs in ideal candidate windows. However, classification in this manner is restricted by the proposal of such candidate windows. End-to-end image segmentation using deep learning overcomes this problem, classifying the image in a pixel-wise manner. Furthermore, the use of appropriate loss functions was found to improve model performance. Field tests show that illumination and shadow pose challenges to the model, but that good recall can be achieved when the conditions are ideal. False positive detection remains an issue that could be improved. This approach shows the potential for drones as an environmental monitoring and management tool when coupled with deep machine learning techniques and outlines potential problems that may be encountered

    Improving Mobility and Safety in Traditional and Intelligent Transportation Systems Using Computational and Mathematical Modeling

    Get PDF
    In traditional transportation systems, park-and-ride (P&R) facilities have been introduced to mitigate the congestion problems and improve mobility. This study in the second chapter, develops a framework that integrates a demand model and an optimization model to study the optimal placement of P&R facilities. The results suggest that the optimal placement of P&R facilities has the potential to improve network performance, and reduce emission and vehicle kilometer traveled. In intelligent transportation systems, autonomous vehicles are expected to bring smart mobility to transportation systems, reduce traffic congestion, and improve safety of drivers and passengers by eliminating human errors. The safe operation of these vehicles highly depends on the data they receive from their external and on-board sensors. Autonomous vehicles like other cyber-physical systems are subject to cyberattacks and may be affected by faulty sensors. The consequent anomalous data can risk the safe operation of autonomous vehicles and may even lead to fatal crashes. Hence, in the third chapter, we develop an unsupervised/semi-supervised machine learning approach to address this gap. Specifically, this approach incorporates an additional autoencoder module into a generative adversarial network, which enables effective learning of the distribution of non-anomalous data. We term our approach GAN-enabled autoencoder for anomaly detection (GAAD). We evaluate the proposed approach using the Lyft Level 5 dataset and demonstrate its superior performance compared to state-of-the-art benchmarks. The prediction of a safe collision-free trajectory is probably the most important factor preventing the full adoption of autonomous vehicles in a public road. Despite recent advancements in motion prediction utilizing machine learning approaches for autonomous driving, the field is still in its early stages and necessitates further development of more effective methods to accurately estimate the future states of surrounding agents. Hence, in the fourth chapter, we introduce a novel deep learning approach for detecting the future trajectory of surrounding vehicles using a high-resolution semantic map and aerial imagery. Our proposed approach leverages integrated spatial and temporal learning to predict future motion. We assess the efficacy of our proposed approach on the Lyft Level 5 prediction dataset and achieve a comparable performance on various motion prediction metrics

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Deep Vision in Optical Imagery: From Perception to Reasoning

    Get PDF
    Deep learning has achieved extraordinary success in a wide range of tasks in computer vision field over the past years. Remote sensing data present different properties as compared to natural images/videos, due to their unique imaging technique, shooting angle, etc. For instance, hyperspectral images usually have hundreds of spectral bands, offering additional information, and the size of objects (e.g., vehicles) in remote sensing images is quite limited, which brings challenges for detection or segmentation tasks. This thesis focuses on two kinds of remote sensing data, namely hyper/multi-spectral and high-resolution images, and explores several methods to try to find answers to the following questions: - In comparison with natural images or videos in computer vision, the unique asset of hyper/multi-spectral data is their rich spectral information. But what this “additional” information brings for learning a network? And how do we take full advantage of these spectral bands? - Remote sensing images at high resolution have pretty different characteristics, bringing challenges for several tasks, for example, small object segmentation. Can we devise tailored networks for such tasks? - Deep networks have produced stunning results in a variety of perception tasks, e.g., image classification, object detection, and semantic segmentation. While the capacity to reason about relations over space is vital for intelligent species. Can a network/module with the capacity of reasoning benefit to parsing remote sensing data? To this end, a couple of networks are devised to figure out what a network learns from hyperspectral images and how to efficiently use spectral bands. In addition, a multi-task learning network is investigated for the instance segmentation of vehicles from aerial images and videos. Finally, relational reasoning modules are designed to improve semantic segmentation of aerial images

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Computer Vision Applications for Autonomous Aerial Vehicles

    Get PDF
    Undoubtedly, unmanned aerial vehicles (UAVs) have experienced a great leap forward over the last decade. It is not surprising anymore to see a UAV being used to accomplish a certain task, which was previously carried out by humans or a former technology. The proliferation of special vision sensors, such as depth cameras, lidar sensors and thermal cameras, and major breakthroughs in computer vision and machine learning fields accelerated the advance of UAV research and technology. However, due to certain unique challenges imposed by UAVs, such as limited payload capacity, unreliable communication link with the ground stations and data safety, UAVs are compelled to perform many tasks on their onboard embedded processing units, which makes it difficult to readily implement the most advanced algorithms on UAVs. This thesis focuses on computer vision and machine learning applications for UAVs equipped with onboard embedded platforms, and presents algorithms that utilize data from multiple modalities. The presented work covers a broad spectrum of algorithms and applications for UAVs, such as indoor UAV perception, 3D understanding with deep learning, UAV localization, and structural inspection with UAVs. Visual guidance and scene understanding without relying on pre-installed tags or markers is the desired approach for fully autonomous navigation of UAVs in conjunction with the global positioning systems (GPS), or especially when GPS information is either unavailable or unreliable. Thus, semantic and geometric understanding of the surroundings become vital to utilize vision as guidance in the autonomous navigation pipelines. In this context, first, robust altitude measurement, safe landing zone detection and doorway detection methods are presented for autonomous UAVs operating indoors. These approaches are implemented on Google Project Tango platform, which is an embedded platform equipped with various sensors including a depth camera. Next, a modified capsule network for 3D object classification is presented with weight optimization so that the network can be fit and run on memory-constrained platforms. Then, a semantic segmentation method for 3D point clouds is developed for a more general visual perception on a UAV equipped with a 3D vision sensor. Next, this thesis presents algorithms for structural health monitoring applications involving UAVs. First, a 3D point cloud-based, drift-free and lightweight localization method is presented for depth camera-equipped UAVs that perform bridge inspection, where GPS signal is unreliable. Next, a thermal leakage detection algorithm is presented for detecting thermal anomalies on building envelopes using aerial thermography from UAVs. Then, building on our thermal anomaly identification expertise gained on the previous task, a novel performance anomaly identification metric (AIM) is presented for more reliable performance evaluation of thermal anomaly identification methods

    A Systematic Review of Convolutional Neural Network-Based Structural Condition Assessment Techniques

    Get PDF
    With recent advances in non-contact sensing technology such as cameras, unmanned aerial and ground vehicles, the structural health monitoring (SHM) community has witnessed a prominent growth in deep learning-based condition assessment techniques of structural systems. These deep learning methods rely primarily on convolutional neural networks (CNNs). The CNN networks are trained using a large number of datasets for various types of damage and anomaly detection and post-disaster reconnaissance. The trained networks are then utilized to analyze newer data to detect the type and severity of the damage, enhancing the capabilities of non-contact sensors in developing autonomous SHM systems. In recent years, a broad range of CNN architectures has been developed by researchers to accommodate the extent of lighting and weather conditions, the quality of images, the amount of background and foreground noise, and multiclass damage in the structures. This paper presents a detailed literature review of existing CNN-based techniques in the context of infrastructure monitoring and maintenance. The review is categorized into multiple classes depending on the specific application and development of CNNs applied to data obtained from a wide range of structures. The challenges and limitations of the existing literature are discussed in detail at the end, followed by a brief conclusion on potential future research directions of CNN in structural condition assessment

    Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources

    Get PDF
    Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization
    • …
    corecore