6,180 research outputs found

    On the Use of Historical Flights for the Urban Growth Analysis of Cities Through Time: The Case Study of Avila (Spain)

    Get PDF
    17 p.Historical aerial images are a unique and relatively unexplored means of deriving spatio-temporal information for scenes and landscapes. Such historical imagery can be combined with photointerpretation and image-based 3D modelling techniques, providing the fourth dimension of time to 3D geometrical representations. This allows urban planners, historians, and other specialists to identify, describe, and analyse changes in scenes and landscapes. Urban growth has an important impact on the sustainable development of cities. An important step for the analysis of urban growth is the identification of different urban sectors. To this end, this paper proposes a methodology for the 4D urban growth analysis of cities through time using a free and open source software developed by the authors. This approach uses the latest advances in photogrammetry, including the so-called incremental Structure from Motion, to evaluate the urbanistic changes of a city by means of confronting two-point clouds from different eras. The objectives of this paper are twofold: (i) first, the processing of historical aerial images using modern photogrammetric techniques; (ii) second, deriving spatio-temporal information for urban cities, offering a method for researchers to identify changes over time. In order to validate this method, the urban growth of the city of Avila between 1956 and 2017 was assessed taking the historical American flight of 1956 and the digital aerial flight of 2017. The results were statistically assessed according to georeferencing quality, confirming that the approach developed can be used to support urban growth analysis through time and providing relevant data in 2D and 3DS

    OmniCity: Omnipotent City Understanding with Multi-level and Multi-view Images

    Full text link
    This paper presents OmniCity, a new dataset for omnipotent city understanding from multi-level and multi-view images. More precisely, the OmniCity contains multi-view satellite images as well as street-level panorama and mono-view images, constituting over 100K pixel-wise annotated images that are well-aligned and collected from 25K geo-locations in New York City. To alleviate the substantial pixel-wise annotation efforts, we propose an efficient street-view image annotation pipeline that leverages the existing label maps of satellite view and the transformation relations between different views (satellite, panorama, and mono-view). With the new OmniCity dataset, we provide benchmarks for a variety of tasks including building footprint extraction, height estimation, and building plane/instance/fine-grained segmentation. Compared with the existing multi-level and multi-view benchmarks, OmniCity contains a larger number of images with richer annotation types and more views, provides more benchmark results of state-of-the-art models, and introduces a novel task for fine-grained building instance segmentation on street-level panorama images. Moreover, OmniCity provides new problem settings for existing tasks, such as cross-view image matching, synthesis, segmentation, detection, etc., and facilitates the developing of new methods for large-scale city understanding, reconstruction, and simulation. The OmniCity dataset as well as the benchmarks will be available at https://city-super.github.io/omnicity

    Semi-Supervised Learning from Street-View Images and OpenStreetMap for Automatic Building Height Estimation

    Get PDF
    Accurate building height estimation is key to the automatic derivation of 3D city models from emerging big geospatial data, including Volunteered Geographical Information (VGI). However, an automatic solution for large-scale building height estimation based on low-cost VGI data is currently missing. The fast development of VGI data platforms, especially OpenStreetMap (OSM) and crowdsourced street-view images (SVI), offers a stimulating opportunity to fill this research gap. In this work, we propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OSM data to generate low-cost and open-source 3D city modeling in LoD1. The proposed method consists of three parts: first, we propose an SSL schema with the option of setting a different ratio of "pseudo label" during the supervised regression; second, we extract multi-level morphometric features from OSM data (i.e., buildings and streets) for the purposed of inferring building height; last, we design a building floor estimation workflow with a pre-trained facade object detection network to generate "pseudo label" from SVI and assign it to the corresponding OSM building footprint. In a case study, we validate the proposed SSL method in the city of Heidelberg, Germany and evaluate the model performance against the reference data of building heights. Based on three different regression models, namely Random Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN), the SSL method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters, which is competitive to state-of-the-art approaches. The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data, with possibilities in even regions and areas with diverse data quality and availability

    Point cloud segmentation using hierarchical tree for architectural models

    Full text link
    Recent developments in the 3D scanning technologies have made the generation of highly accurate 3D point clouds relatively easy but the segmentation of these point clouds remains a challenging area. A number of techniques have set precedent of either planar or primitive based segmentation in literature. In this work, we present a novel and an effective primitive based point cloud segmentation algorithm. The primary focus, i.e. the main technical contribution of our method is a hierarchical tree which iteratively divides the point cloud into segments. This tree uses an exclusive energy function and a 3D convolutional neural network, HollowNets to classify the segments. We test the efficacy of our proposed approach using both real and synthetic data obtaining an accuracy greater than 90% for domes and minarets.Comment: 9 pages. 10 figures. Submitted in EuroGraphics 201

    Development of inventory datasets through remote sensing and direct observation data for earthquake loss estimation

    Get PDF
    This report summarizes the lessons learnt in extracting exposure information for the three study sites, Thessaloniki, Vienna and Messina that were addressed in SYNER-G. Fine scale information on exposed elements that for SYNER-G include buildings, civil engineering works and population, is one of the variables used to quantify risk. Collecting data and creating exposure inventories is a very time-demanding job and all possible data-gathering techniques should be used to address the data shortcoming problem. This report focuses on combining direct observation and remote sensing data for the development of exposure models for seismic risk assessment. In this report a summary of the methods for collecting, processing and archiving inventory datasets is provided in Chapter 2. Chapter 3 deals with the integration of different data sources for optimum inventory datasets, whilst Chapters 4, 5 and 6 provide some case studies where combinations between direct observation and remote sensing have been used. The cities of Vienna (Austria), Thessaloniki (Greece) and Messina (Italy) have been chosen to test the proposed approaches.JRC.G.5-European laboratory for structural assessmen

    Dasymetric mapping using UAV high resolution 3D data within urban areas

    Get PDF
    UID/SOC/04647/2019Multi-temporal analysis of census small-area microdata is hampered by the fact that census tract shapes do not often coincide between census exercises. Dasymetric mapping techniques provide a workaround that is nonetheless highly dependent on the quality of ancillary data. The objectives of this work are to: (1) Compare the use of three spatial techniques for the estimation of population according to census tracts: Areal interpolation and dasymetric mapping using control data-building block area (2D) and volume (3D); (2) demonstrate the potential of unmanned aerial vehicle (UAV) technology for the acquisition of control data; (3) perform a sensitivity analysis using Monte Carlo simulations showing the effect of changes in building block volume (3D information) in population estimates. The control data were extracted by a (semi)-automatic solution-3DEBP (3D extraction building parameters) developed using free open source software (FOSS) tools. The results highlight the relevance of 3D for the dasymetric mapping exercise, especially if the variations in height between building blocks are significant. Using low-cost UAV backed systems with a FOSS-only computing framework also proved to be a competent solution with a large scope of potential applications.publishersversionpublishe

    Imaging multi-age construction settlement behaviour by advanced SAR interferometry

    Get PDF
    This paper focuses on the application of Advanced Satellite Synthetic Aperture Radar Interferometry (A-DInSAR) to subsidence-related issues, with particular reference to ground settlements due to external loads. Beyond the stratigraphic setting and the geotechnical properties of the subsoil, other relevant boundary conditions strongly influence the reliability of remotely sensed data for quantitative analyses and risk mitigation purposes. Because most of the Persistent Scatterer Interferometry (PSI) measurement points (Persistent Scatterers, PSs) lie on structures and infrastructures, the foundation type and the age of a construction are key factors for a proper interpretation of the time series of ground displacements. To exemplify a methodological approach to evaluate these issues, this paper refers to an analysis carried out in the coastal/deltaic plain west of Rome (Rome and Fiumicino municipalities) affected by subsidence and related damages to structures. This region is characterized by a complex geological setting (alternation of recent deposits with low and high compressibilities) and has been subjected to different urbanisation phases starting in the late 1800s, with a strong acceleration in the last few decades. The results of A-DInSAR analyses conducted from 1992 to 2015 have been interpreted in light of high-resolution geological/geotechnical models, the age of the construction, and the types of foundations of the buildings on which the PSs are located. Collection, interpretation, and processing of geo-thematic data were fundamental to obtain high-resolution models; change detection analyses of the land cover allowed us to classify structures/infrastructures in terms of the construction period. Additional information was collected to define the types of foundations, i.e., shallow versus deep foundations. As a result, we found that only by filtering and partitioning the A-DInSAR datasets on the basis of the above-mentioned boundary conditions can the related time series be considered a proxy of the consolidation process governing the subsidence related to external loads as confirmed by a comparison with results from a physically based back analysis based on Terzaghi's theory. Therefore, if properly managed, the A-DInSAR data represents a powerful tool for capturing the evolutionary stage of the process for a single building and has potential for forecasting the behaviour of the terrain-foundation-structure combination
    • …
    corecore