730 research outputs found

    Vision-to-Language Tasks Based on Attributes and Attention Mechanism

    Full text link
    Vision-to-language tasks aim to integrate computer vision and natural language processing together, which has attracted the attention of many researchers. For typical approaches, they encode image into feature representations and decode it into natural language sentences. While they neglect high-level semantic concepts and subtle relationships between image regions and natural language elements. To make full use of these information, this paper attempt to exploit the text guided attention and semantic-guided attention (SA) to find the more correlated spatial information and reduce the semantic gap between vision and language. Our method includes two level attention networks. One is the text-guided attention network which is used to select the text-related regions. The other is SA network which is used to highlight the concept-related regions and the region-related concepts. At last, all these information are incorporated to generate captions or answers. Practically, image captioning and visual question answering experiments have been carried out, and the experimental results have shown the excellent performance of the proposed approach.Comment: 15 pages, 6 figures, 50 reference

    Neural Baby Talk

    Full text link
    We introduce a novel framework for image captioning that can produce natural language explicitly grounded in entities that object detectors find in the image. Our approach reconciles classical slot filling approaches (that are generally better grounded in images) with modern neural captioning approaches (that are generally more natural sounding and accurate). Our approach first generates a sentence `template' with slot locations explicitly tied to specific image regions. These slots are then filled in by visual concepts identified in the regions by object detectors. The entire architecture (sentence template generation and slot filling with object detectors) is end-to-end differentiable. We verify the effectiveness of our proposed model on different image captioning tasks. On standard image captioning and novel object captioning, our model reaches state-of-the-art on both COCO and Flickr30k datasets. We also demonstrate that our model has unique advantages when the train and test distributions of scene compositions -- and hence language priors of associated captions -- are different. Code has been made available at: https://github.com/jiasenlu/NeuralBabyTalkComment: 12 pages, 7 figures, CVPR 201

    ABC-CNN: An Attention Based Convolutional Neural Network for Visual Question Answering

    Full text link
    We propose a novel attention based deep learning architecture for visual question answering task (VQA). Given an image and an image related natural language question, VQA generates the natural language answer for the question. Generating the correct answers requires the model's attention to focus on the regions corresponding to the question, because different questions inquire about the attributes of different image regions. We introduce an attention based configurable convolutional neural network (ABC-CNN) to learn such question-guided attention. ABC-CNN determines an attention map for an image-question pair by convolving the image feature map with configurable convolutional kernels derived from the question's semantics. We evaluate the ABC-CNN architecture on three benchmark VQA datasets: Toronto COCO-QA, DAQUAR, and VQA dataset. ABC-CNN model achieves significant improvements over state-of-the-art methods on these datasets. The question-guided attention generated by ABC-CNN is also shown to reflect the regions that are highly relevant to the questions

    Saliency-Guided Attention Network for Image-Sentence Matching

    Full text link
    This paper studies the task of matching image and sentence, where learning appropriate representations across the multi-modal data appears to be the main challenge. Unlike previous approaches that predominantly deploy symmetrical architecture to represent both modalities, we propose Saliency-guided Attention Network (SAN) that asymmetrically employs visual and textual attention modules to learn the fine-grained correlation intertwined between vision and language. The proposed SAN mainly includes three components: saliency detector, Saliency-weighted Visual Attention (SVA) module, and Saliency-guided Textual Attention (STA) module. Concretely, the saliency detector provides the visual saliency information as the guidance for the two attention modules. SVA is designed to leverage the advantage of the saliency information to improve discrimination of visual representations. By fusing the visual information from SVA and textual information as a multi-modal guidance, STA learns discriminative textual representations that are highly sensitive to visual clues. Extensive experiments demonstrate SAN can substantially improve the state-of-the-art results on the benchmark Flickr30K and MSCOCO datasets by a large margin.Comment: 10 pages, 5 figure

    Equal But Not The Same: Understanding the Implicit Relationship Between Persuasive Images and Text

    Full text link
    Images and text in advertisements interact in complex, non-literal ways. The two channels are usually complementary, with each channel telling a different part of the story. Current approaches, such as image captioning methods, only examine literal, redundant relationships, where image and text show exactly the same content. To understand more complex relationships, we first collect a dataset of advertisement interpretations for whether the image and slogan in the same visual advertisement form a parallel (conveying the same message without literally saying the same thing) or non-parallel relationship, with the help of workers recruited on Amazon Mechanical Turk. We develop a variety of features that capture the creativity of images and the specificity or ambiguity of text, as well as methods that analyze the semantics within and across channels. We show that our method outperforms standard image-text alignment approaches on predicting the parallel/non-parallel relationship between image and text.Comment: To appear in BMVC201

    Image captioning with weakly-supervised attention penalty

    Full text link
    Stories are essential for genealogy research since they can help build emotional connections with people. A lot of family stories are reserved in historical photos and albums. Recent development on image captioning models makes it feasible to "tell stories" for photos automatically. The attention mechanism has been widely adopted in many state-of-the-art encoder-decoder based image captioning models, since it can bridge the gap between the visual part and the language part. Most existing captioning models implicitly trained attention modules with word-likelihood loss. Meanwhile, lots of studies have investigated intrinsic attentions for visual models using gradient-based approaches. Ideally, attention maps predicted by captioning models should be consistent with intrinsic attentions from visual models for any given visual concept. However, no work has been done to align implicitly learned attention maps with intrinsic visual attentions. In this paper, we proposed a novel model that measured consistency between captioning predicted attentions and intrinsic visual attentions. This alignment loss allows explicit attention correction without using any expensive bounding box annotations. We developed and evaluated our model on COCO dataset as well as a genealogical dataset from Ancestry.com Operations Inc., which contains billions of historical photos. The proposed model achieved better performances on all commonly used language evaluation metrics for both datasets.Comment: 10 pages, 5 figure

    Multimodal Transformer with Multi-View Visual Representation for Image Captioning

    Full text link
    Image captioning aims to automatically generate a natural language description of a given image, and most state-of-the-art models have adopted an encoder-decoder framework. The framework consists of a convolution neural network (CNN)-based image encoder that extracts region-based visual features from the input image, and an recurrent neural network (RNN)-based caption decoder that generates the output caption words based on the visual features with the attention mechanism. Despite the success of existing studies, current methods only model the co-attention that characterizes the inter-modal interactions while neglecting the self-attention that characterizes the intra-modal interactions. Inspired by the success of the Transformer model in machine translation, here we extend it to a Multimodal Transformer (MT) model for image captioning. Compared to existing image captioning approaches, the MT model simultaneously captures intra- and inter-modal interactions in a unified attention block. Due to the in-depth modular composition of such attention blocks, the MT model can perform complex multimodal reasoning and output accurate captions. Moreover, to further improve the image captioning performance, multi-view visual features are seamlessly introduced into the MT model. We quantitatively and qualitatively evaluate our approach using the benchmark MSCOCO image captioning dataset and conduct extensive ablation studies to investigate the reasons behind its effectiveness. The experimental results show that our method significantly outperforms the previous state-of-the-art methods. With an ensemble of seven models, our solution ranks the 1st place on the real-time leaderboard of the MSCOCO image captioning challenge at the time of the writing of this paper.Comment: submitted to a journa

    Translating Videos to Commands for Robotic Manipulation with Deep Recurrent Neural Networks

    Full text link
    We present a new method to translate videos to commands for robotic manipulation using Deep Recurrent Neural Networks (RNN). Our framework first extracts deep features from the input video frames with a deep Convolutional Neural Networks (CNN). Two RNN layers with an encoder-decoder architecture are then used to encode the visual features and sequentially generate the output words as the command. We demonstrate that the translation accuracy can be improved by allowing a smooth transaction between two RNN layers and using the state-of-the-art feature extractor. The experimental results on our new challenging dataset show that our approach outperforms recent methods by a fair margin. Furthermore, we combine the proposed translation module with the vision and planning system to let a robot perform various manipulation tasks. Finally, we demonstrate the effectiveness of our framework on a full-size humanoid robot WALK-MAN

    Visual Entailment: A Novel Task for Fine-Grained Image Understanding

    Get PDF
    Existing visual reasoning datasets such as Visual Question Answering (VQA), often suffer from biases conditioned on the question, image or answer distributions. The recently proposed CLEVR dataset addresses these limitations and requires fine-grained reasoning but the dataset is synthetic and consists of similar objects and sentence structures across the dataset. In this paper, we introduce a new inference task, Visual Entailment (VE) - consisting of image-sentence pairs whereby a premise is defined by an image, rather than a natural language sentence as in traditional Textual Entailment tasks. The goal of a trained VE model is to predict whether the image semantically entails the text. To realize this task, we build a dataset SNLI-VE based on the Stanford Natural Language Inference corpus and Flickr30k dataset. We evaluate various existing VQA baselines and build a model called Explainable Visual Entailment (EVE) system to address the VE task. EVE achieves up to 71% accuracy and outperforms several other state-of-the-art VQA based models. Finally, we demonstrate the explainability of EVE through cross-modal attention visualizations. The SNLI-VE dataset is publicly available at https://github.com/ necla-ml/SNLI-VE

    Stacked Semantic-Guided Attention Model for Fine-Grained Zero-Shot Learning

    Full text link
    Zero-Shot Learning (ZSL) is achieved via aligning the semantic relationships between the global image feature vector and the corresponding class semantic descriptions. However, using the global features to represent fine-grained images may lead to sub-optimal results since they neglect the discriminative differences of local regions. Besides, different regions contain distinct discriminative information. The important regions should contribute more to the prediction. To this end, we propose a novel stacked semantics-guided attention (S2GA) model to obtain semantic relevant features by using individual class semantic features to progressively guide the visual features to generate an attention map for weighting the importance of different local regions. Feeding both the integrated visual features and the class semantic features into a multi-class classification architecture, the proposed framework can be trained end-to-end. Extensive experimental results on CUB and NABird datasets show that the proposed approach has a consistent improvement on both fine-grained zero-shot classification and retrieval tasks
    • …
    corecore