7,859 research outputs found

    Microservices: Granularity vs. Performance

    Full text link
    Microservice Architectures (MA) have the potential to increase the agility of software development. In an era where businesses require software applications to evolve to support software emerging requirements, particularly for Internet of Things (IoT) applications, we examine the issue of microservice granularity and explore its effect upon application latency. Two approaches to microservice deployment are simulated; the first with microservices in a single container, and the second with microservices partitioned across separate containers. We observed a neglibible increase in service latency for the multiple container deployment over a single container.Comment: 6 pages, conferenc

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor

    Supporting security-oriented, inter-disciplinary research: crossing the social, clinical and geospatial domains

    Get PDF
    How many people have had a chronic disease for longer than 5-years in Scotland? How has this impacted upon their choices of employment? Are there any geographical clusters in Scotland where a high-incidence of patients with such long-term illness can be found? How does the life expectancy of such individuals compare with the national averages? Such questions are important to understand the health of nations and the best ways in which health care should be delivered and measured for their impact and success. In tackling such research questions, e-Infrastructures need to provide tailored, secure access to an extensible range of distributed resources including primary and secondary e-Health clinical data; social science data, and geospatial data sets amongst numerous others. In this paper we describe the security models underlying these e-Infrastructures and demonstrate their implementation in supporting secure, federated access to a variety of distributed and heterogeneous data sets exploiting the results of a variety of projects at the National e-Science Centre (NeSC) at the University of Glasgow

    CrossFlow: Integrating Workflow Management and Electronic Commerce

    Get PDF
    The CrossFlow1 architecture provides support for cross-organisational workflow management in dynamically established virtual enterprises. The creation of a business relationship between a service provider organisation performing a service on behalf of a consumer organisation can be made dynamic when augmented by virtual market technology, the dynamic configuration of the contract enactment infrastructures, and the provision of fine grained service monitoring and control. Standard ways of describing services and contracts can be combined with matchmaking technology to create a virtual market for such service provision and consumption. A provider can then advertise its services in the market and consumers can search for a compatible business partner. This provides choice in selecting a partner and allows the deferment of the decision to a point in time where it can be made on the most up-to-date requirements of the consumer and service offers in the market. The penalty for deferred decision making is the time to set up the infrastructure in each organisation for the dynamically established contract. Thus, a further aspect of CrossFlow was to exploit the contract in the dynamic and automatic configuration of the contract enactment and supervision infrastructures of the respective organisations and in linking them in a dynamic fashion. The electronic contract, which results from the agreement between the newly established business partners, completely specifies the intended collaboration between them. Given the importance of the business process enacted by the provider, this includes fine-grained monitoring and control to allow tight co-operation between the organisations

    CrossFlow: Cross-Organizational Workflow Management for Service Outsourcing in Dynamic Virtual Enterprises

    Get PDF
    In this report, we present the approach to cross-organizational workflow management of the CrossFlow project. CrossFlow is a European research project aiming at the support of cross-organizational workflows in dynamic virtual enterprises. The cooperation in these virtual enterprises is based on dynamic service outsourcing specified in electronic contracts. Service enactment is performed by dynamically linking the workflow management infrastructures of the involved organizations. Extended service enactment support is provided in the form of cross-organizational transaction management and process control, advanced quality of service monitoring, and support for high-level flexibility in service enactment. CrossFlow technology is realized on top of a commercial workflow management platform and applied in two real-world scenarios in the contexts of a logistics and an insurance company

    Hybrid Workload Enabled and Secure Healthcare Monitoring Sensing Framework in Distributed Fog-Cloud Network

    Get PDF
    The Internet of Medical Things (IoMT) workflow applications have been rapidly growing in practice. These internet-based applications can run on the distributed healthcare sensing system, which combines mobile computing, edge computing and cloud computing. Offloading and scheduling are the required methods in the distributed network. However, a security issue exists and it is hard to run different types of tasks (e.g., security, delay-sensitive, and delay-tolerant tasks) of IoMT applications on heterogeneous computing nodes. This work proposes a new healthcare architecture for workflow applications based on heterogeneous computing nodes layers: an application layer, management layer, and resource layer. The goal is to minimize the makespan of all applications. Based on these layers, the work proposes a secure offloading-efficient task scheduling (SEOS) algorithm framework, which includes the deadline division method, task sequencing rules, homomorphic security scheme, initial scheduling, and the variable neighbourhood searching method. The performance evaluation results show that the proposed plans outperform all existing baseline approaches for healthcare applications in terms of makespan

    Simplifying the Development, Use and Sustainability of HPC Software

    Full text link
    Developing software to undertake complex, compute-intensive scientific processes requires a challenging combination of both specialist domain knowledge and software development skills to convert this knowledge into efficient code. As computational platforms become increasingly heterogeneous and newer types of platform such as Infrastructure-as-a-Service (IaaS) cloud computing become more widely accepted for HPC computations, scientists require more support from computer scientists and resource providers to develop efficient code and make optimal use of the resources available to them. As part of the libhpc stage 1 and 2 projects we are developing a framework to provide a richer means of job specification and efficient execution of complex scientific software on heterogeneous infrastructure. The use of such frameworks has implications for the sustainability of scientific software. In this paper we set out our developing understanding of these challenges based on work carried out in the libhpc project.Comment: 4 page position paper, submission to WSSSPE13 worksho
    • …
    corecore