2,367 research outputs found

    In-Vivo Bytecode Instrumentation for Improving Privacy on Android Smartphones in Uncertain Environments

    Get PDF
    In this paper we claim that an efficient and readily applicable means to improve privacy of Android applications is: 1) to perform runtime monitoring by instrumenting the application bytecode and 2) in-vivo, i.e. directly on the smartphone. We present a tool chain to do this and present experimental results showing that this tool chain can run on smartphones in a reasonable amount of time and with a realistic effort. Our findings also identify challenges to be addressed before running powerful runtime monitoring and instrumentations directly on smartphones. We implemented two use-cases leveraging the tool chain: BetterPermissions, a fine-grained user centric permission policy system and AdRemover an advertisement remover. Both prototypes improve the privacy of Android systems thanks to in-vivo bytecode instrumentation.Comment: ISBN: 978-2-87971-111-

    Adaptive just-in-time code diversification

    Get PDF
    We present a method to regenerate diversified code dynamically in a Java bytecode JIT compiler, and to update the diversification frequently during the execution of the program. This way, we can significantly reduce the time frame in which attackers can let a program leak useful address space information and subsequently use the leaked information in memory exploits. A proof of concept implementation is evaluated, showing that even though code is recompiled frequently, we can achieved smaller overheads than the previous state of the art, which generated diversity only once during the whole execution of a program

    Retrofitting privacy controls to stock Android

    Get PDF
    Android ist nicht nur das beliebteste Betriebssystem fĂŒr mobile EndgerĂ€te, sondern auch ein ein attraktives Ziel fĂŒr Angreifer. Um diesen zu begegnen, nutzt Androids Sicherheitskonzept App-Isolation und Zugangskontrolle zu kritischen Systemressourcen. Nutzer haben dabei aber nur wenige Optionen, App-Berechtigungen gemĂ€ĂŸ ihrer BedĂŒrfnisse einzuschrĂ€nken, sondern die Entwickler entscheiden ĂŒber zu gewĂ€hrende Berechtigungen. Androids Sicherheitsmodell kann zudem nicht durch Dritte angepasst werden, so dass Nutzer zum Schutz ihrer PrivatsphĂ€re auf die GerĂ€tehersteller angewiesen sind. Diese Dissertation prĂ€sentiert einen Ansatz, Android mit umfassenden PrivatsphĂ€reeinstellungen nachzurĂŒsten. Dabei geht es konkret um Techniken, die ohne Modifikationen des Betriebssystems oder Zugriff auf Root-Rechte auf regulĂ€ren Android-GerĂ€ten eingesetzt werden können. Der erste Teil dieser Arbeit etabliert Techniken zur Durchsetzung von Sicherheitsrichtlinien fĂŒr Apps mithilfe von inlined reference monitors. Dieser Ansatz wird durch eine neue Technik fĂŒr dynamic method hook injection in Androids Java VM erweitert. Schließlich wird ein System eingefĂŒhrt, das prozessbasierte privilege separation nutzt, um eine virtualisierte App-Umgebung zu schaffen, um auch komplexe Sicherheitsrichtlinien durchzusetzen. Eine systematische Evaluation unseres Ansatzes konnte seine praktische Anwendbarkeit nachweisen und mehr als eine Million Downloads unserer Lösung zeigen den Bedarf an praxisgerechten Werkzeugen zum Schutz der PrivatsphĂ€re.Android is the most popular operating system for mobile devices, making it a prime target for attackers. To counter these, Android’s security concept uses app isolation and access control to critical system resources. However, Android gives users only limited options to restrict app permissions according to their privacy preferences but instead lets developers dictate the permissions users must grant. Moreover, Android’s security model is not designed to be customizable by third-party developers, forcing users to rely on device manufacturers to address their privacy concerns. This thesis presents a line of work that retrofits comprehensive privacy controls to the Android OS to put the user back in charge of their device. It focuses on developing techniques that can be deployed to stock Android devices without firmware modifications or root privileges. The first part of this dissertation establishes fundamental policy enforcement on thirdparty apps using inlined reference monitors to enhance Android’s permission system. This approach is then refined by introducing a novel technique for dynamic method hook injection on Android’s Java VM. Finally, we present a system that leverages process-based privilege separation to provide a virtualized application environment that supports the enforcement of complex security policies. A systematic evaluation of our approach demonstrates its practical applicability, and over one million downloads of our solution confirm user demand for privacy-enhancing tools

    On component-oriented access control in lightweight virtualized server environments

    Get PDF
    2017 Fall.Includes bibliographical references.With the advancements in contemporary multi-core CPU architectures and increase in main memory capacity, it is now possible for a server operating system (OS), such as Linux, to handle a large number of concurrent services on a single server instance. Individual components of such services may run in different isolated runtime environments, such as chrooted jails or related forms of OS-level containers, and may need restricted access to system resources and the ability to share data and coordinate with each other in a regulated and secure manner. In this dissertation we describe our work on the access control framework for policy formulation, management, and enforcement that allows access to OS resources and also permits controlled data sharing and coordination for service components running in disjoint containerized environments within a single Linux OS server instance. The framework consists of two models and the policy formulation is based on the concept of policy classes for ease of administration and enforcement. The policy classes are managed and enforced through a Lightweight Policy Machine for Linux (LPM) that acts as the centralized reference monitor and provides a uniform interface for regulating access to system resources and requesting data and control objects. We present the details of our framework and also discuss the preliminary implementation and evaluation to demonstrate the feasibility of our approach

    An Android Security Policy Enforcement Tool

    Get PDF
    The Android operating system (OS) has become the dominant smart phone OS in recent years due to its accessibility, usability and its open-source philosophy. Consequently, this has also made it a popular target for attackers who aim to install malware on Android devices and take advantage of Android’s coarse-grained, non-revoking permission system. This project designs, implements and evaluates a security tool named COMBdroid, which addresses these security concerns in Android by enforcing fine-grained, user-defined policies. COMBdroid modifies an application before installation, allowing it to override points of security vulnerabilities at run-time. As a proof of concept we have implemented three policies in COMBdroid. This paper documents the development process of COMBdroid, deriving design decisions from the literature review, detailing the design and implementation, and proving the program’s effectiveness through evaluation.

    AppGuard — fine-grained policy enforcement for untrusted android applications

    Get PDF
    Android’s success makes it a prominent target for malicious software. However, the user has very limited control over security-relevant operations. This work presents AppGuard, a powerful and flexible security system that overcomes these deficiencies. It enforces user-defined security policies on untrusted Android applications without requiring any changes to a smartphone’s firmware, root access, or the like. Finegrained and stateful security policies are expressed in a formal specification language, which also supports secrecy requirements. Our system offers complete mediation of security-relevant methods based on calleesite inline reference monitoring and supports widespread deployment. In the experimental analysis we demonstrate the removal of permissions for overly curious apps as well as how to defend against several recent real-world attacks on Android phones. Our technique exhibits very little space and runtime overhead. The utility of AppGuard has already been demonstrated by more than 1,000,000 downloads
    • 

    corecore