799 research outputs found

    FocusNet++: Attentive Aggregated Transformations for Efficient and Accurate Medical Image Segmentation

    Get PDF
    We propose a new residual block for convolutional neural networks and demonstrate its state-of-the-art performance in medical image segmentation. We combine attention mechanisms with group convolutions to create our group attention mechanism, which forms the fundamental building block of our network, FocusNet++. We employ a hybrid loss based on balanced cross entropy, Tversky loss and the adaptive logarithmic loss to enhance the performance along with fast convergence. Our results show that FocusNet++ achieves state-of-the-art results across various benchmark metrics for the ISIC 2018 melanoma segmentation and the cell nuclei segmentation datasets with fewer parameters and FLOPs.Comment: Published at ISBI 202

    Combining Visual and Textual Features for Semantic Segmentation of Historical Newspapers

    Full text link
    The massive amounts of digitized historical documents acquired over the last decades naturally lend themselves to automatic processing and exploration. Research work seeking to automatically process facsimiles and extract information thereby are multiplying with, as a first essential step, document layout analysis. If the identification and categorization of segments of interest in document images have seen significant progress over the last years thanks to deep learning techniques, many challenges remain with, among others, the use of finer-grained segmentation typologies and the consideration of complex, heterogeneous documents such as historical newspapers. Besides, most approaches consider visual features only, ignoring textual signal. In this context, we introduce a multimodal approach for the semantic segmentation of historical newspapers that combines visual and textual features. Based on a series of experiments on diachronic Swiss and Luxembourgish newspapers, we investigate, among others, the predictive power of visual and textual features and their capacity to generalize across time and sources. Results show consistent improvement of multimodal models in comparison to a strong visual baseline, as well as better robustness to high material variance

    Document image classification combining textual and visual features.

    Get PDF
    This research contributes to the problem of classifying document images. The main addition of this thesis is the exploitation of textual and visual features through an approach that uses Convolutional Neural Networks. The study uses a combination of Optical Character Recognition and Natural Language Processing algorithms to extract and manipulate relevant text concepts from document images. Such content information are embedded within document images, with the aim of adding elements which help to improve the classification results of a Convolutional Neural Network. The experimental phase proves that the overall document classification accuracy of a Convolutional Neural Network trained using these text-augmented document images, is considerably higher than the one achieved by a similar model trained solely on classic document images, especially when different classes of documents share similar visual characteristics. The comparison between our method and state-of-the-art approaches demonstrates the effectiveness of combining visual and textual features. Although this thesis is about document image classification, the idea of using textual and visual features is not restricted to this context and comes from the observation that textual and visual information are complementary and synergetic in many aspects

    Pelee: A Real-Time Object Detection System on Mobile Devices

    Get PDF
    There has been a rising interest in running high-quality Convolutional Neural Network (CNN) models under strict constraints on memory and computational budget. A number of efficient architectures have been proposed in recent years, for example, MobileNet, ShuffleNet, and NASNet-A. However, all these architectures are heavily dependent on depthwise separable convolution which lacks efficient implementation in most deep learning frameworks. Meanwhile, there are few studies that combine efficient models with fast object detection algorithms. This research tries to explore the design of an efficient CNN architecture for both image classification tasks and object detection tasks. We propose an efficient architecture named PeleeNet, which is built with conventional convolution instead. On ImageNet ILSVRC 2012 dataset, our proposed PeleeNet achieves a higher accuracy by 0.6% and 11% lower computational cost than MobileNet, the state-of-the-art efficient architecture. It is also important to point out that PeleeNet is of only 66% of the model size of MobileNet and 1/49 size of VGG. We then propose a real-time object detection system on mobile devices. We combine PeleeNet with Single Shot MultiBox Detector (SSD) method and optimize the architecture for fast speed. Meanwhile, we port SSD to iOS and provide an optimized code implementation. Our proposed detection system, named Pelee, achieves 70.9% mAP on PASCAL VOC2007 dataset at the speed of 17 FPS on iPhone 6s and 23.6 FPS on iPhone 8. Compared to TinyYOLOv2, the most widely used computational efficient object detection system, our proposed Pelee is more accurate (70.9% vs. 57.1%), 2.88 times lower in computational cost and 2.92 times smaller in model size

    Precise Proximal Femur Fracture Classification for Interactive Training and Surgical Planning

    Full text link
    We demonstrate the feasibility of a fully automatic computer-aided diagnosis (CAD) tool, based on deep learning, that localizes and classifies proximal femur fractures on X-ray images according to the AO classification. The proposed framework aims to improve patient treatment planning and provide support for the training of trauma surgeon residents. A database of 1347 clinical radiographic studies was collected. Radiologists and trauma surgeons annotated all fractures with bounding boxes, and provided a classification according to the AO standard. The proposed CAD tool for the classification of radiographs into types "A", "B" and "not-fractured", reaches a F1-score of 87% and AUC of 0.95, when classifying fractures versus not-fractured cases it improves up to 94% and 0.98. Prior localization of the fracture results in an improvement with respect to full image classification. 100% of the predicted centers of the region of interest are contained in the manually provided bounding boxes. The system retrieves on average 9 relevant images (from the same class) out of 10 cases. Our CAD scheme localizes, detects and further classifies proximal femur fractures achieving results comparable to expert-level and state-of-the-art performance. Our auxiliary localization model was highly accurate predicting the region of interest in the radiograph. We further investigated several strategies of verification for its adoption into the daily clinical routine. A sensitivity analysis of the size of the ROI and image retrieval as a clinical use case were presented.Comment: Accepted at IPCAI 2020 and IJCAR

    Edge-Cloud Polarization and Collaboration: A Comprehensive Survey for AI

    Full text link
    Influenced by the great success of deep learning via cloud computing and the rapid development of edge chips, research in artificial intelligence (AI) has shifted to both of the computing paradigms, i.e., cloud computing and edge computing. In recent years, we have witnessed significant progress in developing more advanced AI models on cloud servers that surpass traditional deep learning models owing to model innovations (e.g., Transformers, Pretrained families), explosion of training data and soaring computing capabilities. However, edge computing, especially edge and cloud collaborative computing, are still in its infancy to announce their success due to the resource-constrained IoT scenarios with very limited algorithms deployed. In this survey, we conduct a systematic review for both cloud and edge AI. Specifically, we are the first to set up the collaborative learning mechanism for cloud and edge modeling with a thorough review of the architectures that enable such mechanism. We also discuss potentials and practical experiences of some on-going advanced edge AI topics including pretraining models, graph neural networks and reinforcement learning. Finally, we discuss the promising directions and challenges in this field.Comment: 20 pages, Transactions on Knowledge and Data Engineerin

    Im2Flow: Motion Hallucination from Static Images for Action Recognition

    Full text link
    Existing methods to recognize actions in static images take the images at their face value, learning the appearances---objects, scenes, and body poses---that distinguish each action class. However, such models are deprived of the rich dynamic structure and motions that also define human activity. We propose an approach that hallucinates the unobserved future motion implied by a single snapshot to help static-image action recognition. The key idea is to learn a prior over short-term dynamics from thousands of unlabeled videos, infer the anticipated optical flow on novel static images, and then train discriminative models that exploit both streams of information. Our main contributions are twofold. First, we devise an encoder-decoder convolutional neural network and a novel optical flow encoding that can translate a static image into an accurate flow map. Second, we show the power of hallucinated flow for recognition, successfully transferring the learned motion into a standard two-stream network for activity recognition. On seven datasets, we demonstrate the power of the approach. It not only achieves state-of-the-art accuracy for dense optical flow prediction, but also consistently enhances recognition of actions and dynamic scenes.Comment: Published in CVPR 2018, project page: http://vision.cs.utexas.edu/projects/im2flow
    • …
    corecore