1,732 research outputs found

    SmartAQnet 2020: A New Open Urban Air Quality Dataset from Heterogeneous PM Sensors

    Get PDF
    The increasing attention paid to urban air quality modeling places higher requirements on urban air quality datasets. This article introduces a new urban air quality dataset—the SmartAQnet2020 dataset—which has a large span and high resolution in both time and space dimensions. The dataset contains 248,572,003 observations recorded by over 180 individual measurement devices, including ceilometers, Radio Acoustic Sounding System (RASS), mid- and low-cost stationary measuring equipment equipped with meteorological sensors and particle counters, and low-weight portable measuring equipment mounted on different platforms such as trolley, bike, and UAV

    Toward Massive Scale Air Quality Monitoring

    Get PDF
    Dangers associated with poor air quality are driving deployments of air quality monitoring technology. These deployments rely either on professional-grade measurement stations or a small number of low-cost sensors integrated into urban infrastructure. In this article, we present a research vision of real-time massive scale air quality sensing that integrates tens of thousands or even millions of air quality sensors to monitor air quality at fine spatial and temporal resolution. We highlight opportunities and challenges of our vision by discussing use cases, key requirements and reference technologies in order to establish a roadmap on how to realize this vision. We address the feasibility of our vision, introducing a testbed deployment in Helsinki, Finland, and carrying out controlled experiments that address collaborative and opportunistic sensor calibration, a key research challenge for our vision.Peer reviewe

    A survey of urban drive-by sensing: An optimization perspective

    Full text link
    Pervasive and mobile sensing is an integral part of smart transport and smart city applications. Vehicle-based mobile sensing, or drive-by sensing (DS), is gaining popularity in both academic research and field practice. The DS paradigm has an inherent transport component, as the spatial-temporal distribution of the sensors are closely related to the mobility patterns of their hosts, which may include third-party (e.g. taxis, buses) or for-hire (e.g. unmanned aerial vehicles and dedicated vehicles) vehicles. It is therefore essential to understand, assess and optimize the sensing power of vehicle fleets under a wide range of urban sensing scenarios. To this end, this paper offers an optimization-oriented summary of recent literature by presenting a four-step discussion, namely (1) quantifying the sensing quality (objective); (2) assessing the sensing power of various fleets (strategic); (3) sensor deployment (strategic/tactical); and (4) vehicle maneuvers (tactical/operational). By compiling research findings and practical insights in this way, this review article not only highlights the optimization aspect of drive-by sensing, but also serves as a practical guide for configuring and deploying vehicle-based urban sensing systems.Comment: 24 pages, 3 figures, 4 table

    Urban air pollution modelling with machine learning using fixed and mobile sensors

    Get PDF
    Detailed air quality (AQ) information is crucial for sustainable urban management, and many regions in the world have built static AQ monitoring networks to provide AQ information. However, they can only monitor the region-level AQ conditions or sparse point-based air pollutant measurements, but cannot capture the urban dynamics with high-resolution spatio-temporal variations over the region. Without pollution details, citizens will not be able to make fully informed decisions when choosing their everyday outdoor routes or activities, and policy-makers can only make macroscopic regulating decisions on controlling pollution triggering factors and emission sources. An increasing research effort has been paid on mobile and ubiquitous sampling campaigns as they are deemed the more economically and operationally feasible methods to collect urban AQ data with high spatio-temporal resolution. The current research proposes a Machine Learning based AQ Inference (Deep AQ) framework from data-driven perspective, consisting of data pre-processing, feature extraction and transformation, and pixelwise (grid-level) AQ inference. The Deep AQ framework is adaptable to integrate AQ measurements from the fixed monitoring sites (temporally dense but spatially sparse), and mobile low-cost sensors (temporally sparse but spatially dense). While instantaneous pollutant concentration varies in the micro-environment, this research samples representative values in each grid-cell-unit and achieves AQ inference at 1 km \times 1 km pixelwise scale. This research explores the predictive power of the Deep AQ framework based on samples from only 40 fixed monitoring sites in Chengdu, China (4,900 {\mathrm{km}}^\mathrm{2}, 26 April - 12 June 2019) and collaborative sampling from 28 fixed monitoring sites and 15 low-cost sensors equipped with taxis deployed in Beijing, China (3,025 {\mathrm{km}}^\mathrm{2}, 19 June - 16 July 2018). The proposed Deep AQ framework is capable of producing high-resolution (1 km \times 1 km, hourly) pixelwise AQ inference based on multi-source AQ samples (fixed or mobile) and urban features (land use, population, traffic, and meteorological information, etc.). This research has achieved high-resolution (1 km \times 1 km, hourly) AQ inference (Chengdu: less than 1% spatio-temporal coverage; Beijing: less than 5% spatio-temporal coverage) with reasonable and satisfactory accuracy by the proposed methods in urban cases (Chengdu: SMAPE \mathrm{<} 20%; Beijing: SMAPE \mathrm{<} 15%). Detailed outcomes and main conclusions are provided in this thesis on the aspects of fixed and mobile sensing, spatio-temporal coverage and density, and the relative importance of urban features. Outcomes from this research facilitate to provide a scientific and detailed health impact assessment framework for exposure analysis and inform policy-makers with data driven evidence for sustainable urban management.Open Acces

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure
    • …
    corecore