46,024 research outputs found

    Quantifying Performance Costs of Database Fine-Grained Access Control

    Get PDF
    Fine-grained access control is a conceptual approach to addressing database security requirements. In relational database management systems, fine-grained access control refers to access restrictions enforced at the row, column, or cell level. While a number of commercial implementations of database fine-grained access control are available, there are presently no generalized approaches to implementing fine-grained access control for relational database management systems. Fine-grained access control is potentially a good solution for database professionals and system architects charged with designing database applications that implement granular security or privacy protection features. However, in the oral tradition of the database community, fine-grained access control is spoken of as imposing significant performance penalties, and is therefore best avoided. Regardless, there are current and emerging social, legal, and economic forces that mandate the need for efficient fine-grained access control in relational database management systems. In the study undertaken, the author was able to quantify the performance costs associated with four common implementations of fine-grained access control for relational database management systems. Security benchmarking was employed as the methodology to quantify performance costs. Synthetic data from the TPC-W benchmark as well as representative data from a real-world application were utilized in the benchmarking process. A simple graph-base performance model for Fine-grained Access Control Evaluation (FACE) was developed from benchmark data collected during the study. The FACE model is intended for use in predicting throughput and response times for relational database management systems that implement fine-grained access control using one of the common fine-grained access control mechanisms - authorization views, the Hippocratic Database, label-based access control, and transparent query rewrite. The author also addresses the issue of scalability for fine-grained access control mechanisms that were evaluated in the study

    Fine-Grained Access Control Within NoSQL Document-Oriented Datastores

    Get PDF
    The recent years have seen the birth of several NoSQL datastores, which are getting more and more popularity for their ability to handle high volumes of heterogeneous and unstructured data in a very efficient way. In several cases, NoSQL databases proved to outclass in terms of performance, scalability, and ease of use relational database management systems, meeting the requirements of a variety of today ICT applications. However, recent surveys reveal that, despite their undoubted popularity, NoSQL datastores suffer from some weaknesses, among which the lack of effective support for data protection appears among the most serious ones. Proper data protection mechanisms are therefore required to fill this void. In this work, we start to address this issue by focusing on access control and discussing the definition of a fine-grained access control framework for document-oriented NoSQL datastores. More precisely, we first focus on issues and challenges related to the definition of such a framework, considering theoretical, implementation, and integration aspects. Then, we discuss the reasons for which state-of-the-art fine-grained access control solutions proposed for relational database management systems cannot be used within the NoSQL scenario. We then introduce possible strategies to address the identified issues, which are at the basis of the framework development. Finally, we shortly report the outcome of an experience where the proposed framework has been used to enhance the data protection features of a popular NoSQL database

    Security oriented e-infrastructures supporting neurological research and clinical trials

    Get PDF
    The neurological and wider clinical domains stand to gain greatly from the vision of the grid in providing seamless yet secure access to distributed, heterogeneous computational resources and data sets. Whilst a wealth of clinical data exists within local, regional and national healthcare boundaries, access to and usage of these data sets demands that fine grained security is supported and subsequently enforced. This paper explores the security challenges of the e-health domain, focusing in particular on authorization. The context of these explorations is the MRC funded VOTES (Virtual Organisations for Trials and Epidemiological Studies) and the JISC funded GLASS (Glasgow early adoption of Shibboleth project) which are developing Grid infrastructures for clinical trials with case studies in the brain trauma domain

    My private cloud--granting federated access to cloud resources

    Get PDF
    We describe the research undertaken in the six month JISC/EPSRC funded My Private Cloud project, in which we built a demonstration cloud file storage service that allows users to login to it, by using their existing credentials from a configured trusted identity provider. Once authenticated, users are shown a set of accounts that they are the owners of, based on their identity attributes. Once users open one of their accounts, they can upload and download files to it. Not only that, but they can then grant access to their file resources to anyone else in the federated system, regardless of whether their chosen delegate has used the cloud service before or not. The system uses standard identity management protocols, attribute based access controls, and a delegation service. A set of APIs have been defined for the authentication, authorisation and delegation processes, and the software has been released as open source to the community. A public demonstration of the system is available online
    • …
    corecore