826 research outputs found

    An efficient PHR service system supporting fuzzy keyword search and fine-grained access control

    Get PDF
    Outsourcing of personal health record (PHR) has attracted considerable interest recently. It can not only bring much convenience to patients, it also allows efficient sharing of medical information among researchers. As the medical data in PHR is sensitive, it has to be encrypted before outsourcing. To achieve fine-grained access control over the encrypted PHR data becomes a challenging problem. In this paper, we provide an affirmative solution to this problem. We propose a novel PHR service system which supports efficient searching and fine-grained access control for PHR data in a hybrid cloud environment, where a private cloud is used to assist the user to interact with the public cloud for processing PHR data. In our proposed solution, we make use of attribute-based encryption (ABE) technique to obtain fine-grained access control for PHR data. In order to protect the privacy of PHR owners, our ABE is anonymous. That is, it can hide the access policy information in ciphertexts. Meanwhile, our solution can also allow efficient fuzzy search over PHR data, which can greatly improve the system usability. We also provide security analysis to show that the proposed solution is secure and privacy-preserving. The experimental results demonstrate the efficiency of the proposed scheme.Peer ReviewedPostprint (author's final draft

    Sharing of Data Using Key Aggregation and Searchable Encryption

    Get PDF
    Sharing data with different users is an important functionality of the cloud. However, while enjoying the convenience provided by the cloud storage, user’s main concern is regarding the data leakage present in cloud. A promising approach to prevent this is encryption of data before uploading onto cloud. The desire to selectively and securely share documents with any group of users demands different documents to have different encryption keys. This necessitates the distribution of a large number of keys to users for both encryption and search, those users will have to securely store these keys, and submit an equally large number of keyword trapdoors to the cloud in order to perform search. In this paper, we resolve this problem by extending the concept of Key Aggregate Searchable Encryption (KASE) scheme which employs a single aggregate key and a single trapdoor. Here, the data owner only needs to distribute a single key to a user for sharing a large number of documents, and the user only needs to submit a single trapdoor to the cloud for querying the documents. Also, we provide a functionality of selection of keyword based on their rank by the Data owner in such a way that the selected keywords describe the file. Thus, this scheme makes the management of the keys efficient and also makes the sharing of documents over the cloud more secure

    A SURVEY ON CRYPTOGRAPHIC CLOUD STORAGE WITH KEY AGGREGATE SEARCHABLE ENCRYPTION

    Get PDF
    Cloud is a new way to store large amount of data. In cloud computing, data owners host their data on cloud servers and users can access the data from cloud servers. By data outsourcing, users can be relieved from the burden of local data storage and maintenance. Cloud storage has emerged as a promising solution for providing ubiquitous, convenient, and on-demand accesses to large amounts of data shared over the Internet.Considering the practical problem of privacy preserving data sharing system based on public cloud storage which requires a data owner to distribute a large number of keys to users to enable them to access his/her documents, we for the first time propose the concept of key-aggregate searchable encryption (KASE) and construct a concrete KASE scheme. Both analysis and evaluation results confirm that our work can provide an effective solution to building practical data sharing system based on public cloud storage

    Aggregation of Key with Searchable Encryption for Group Data Sharing

    Get PDF
    Data sharing is an important functionality in cloud storage. In this article, we show how to securely, efficiently, and flexibly share data with others in cloud storage. We describe new public-key cryptosystems which produce constant-size ciphertexts such that efficient delegation of decryption rights for any set of ciphertexts are possible. The novelty is that one can aggregate any set of secret keys and make them as compact as a single key, but encompassing the power of all the keys being aggregated. In other words, the secret key holder can release a constant-size aggregate key for flexible choices of ciphertext set in cloud storage, but the other encrypted files outside the set remain confidential. This compact aggregate key can be conveniently sent to others or be stored in a smart card with very limited secure storage. We provide formal security analysis of our schemes in the standard model. We also describe other application of our schemes. In particular, our schemes give the first public-key patient-controlled encryption for flexible hierarchy, which was yet to be known

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed
    • …
    corecore