15,093 research outputs found

    Lying Your Way to Better Traffic Engineering

    Full text link
    To optimize the flow of traffic in IP networks, operators do traffic engineering (TE), i.e., tune routing-protocol parameters in response to traffic demands. TE in IP networks typically involves configuring static link weights and splitting traffic between the resulting shortest-paths via the Equal-Cost-MultiPath (ECMP) mechanism. Unfortunately, ECMP is a notoriously cumbersome and indirect means for optimizing traffic flow, often leading to poor network performance. Also, obtaining accurate knowledge of traffic demands as the input to TE is elusive, and traffic conditions can be highly variable, further complicating TE. We leverage recently proposed schemes for increasing ECMP's expressiveness via carefully disseminated bogus information ("lies") to design COYOTE, a readily deployable TE scheme for robust and efficient network utilization. COYOTE leverages new algorithmic ideas to configure (static) traffic splitting ratios that are optimized with respect to all (even adversarially chosen) traffic scenarios within the operator's "uncertainty bounds". Our experimental analyses show that COYOTE significantly outperforms today's prevalent TE schemes in a manner that is robust to traffic uncertainty and variation. We discuss experiments with a prototype implementation of COYOTE

    Recursive SDN for Carrier Networks

    Full text link
    Control planes for global carrier networks should be programmable (so that new functionality can be easily introduced) and scalable (so they can handle the numerical scale and geographic scope of these networks). Neither traditional control planes nor new SDN-based control planes meet both of these goals. In this paper, we propose a framework for recursive routing computations that combines the best of SDN (programmability) and traditional networks (scalability through hierarchy) to achieve these two desired properties. Through simulation on graphs of up to 10,000 nodes, we evaluate our design's ability to support a variety of routing and traffic engineering solutions, while incorporating a fast failure recovery mechanism

    The effect of network structure on phase transitions in queuing networks

    Get PDF
    Recently, De Martino et al have presented a general framework for the study of transportation phenomena on complex networks. One of their most significant achievements was a deeper understanding of the phase transition from the uncongested to the congested phase at a critical traffic load. In this paper, we also study phase transition in transportation networks using a discrete time random walk model. Our aim is to establish a direct connection between the structure of the graph and the value of the critical traffic load. Applying spectral graph theory, we show that the original results of De Martino et al showing that the critical loading depends only on the degree sequence of the graph -- suggesting that different graphs with the same degree sequence have the same critical loading if all other circumstances are fixed -- is valid only if the graph is dense enough. For sparse graphs, higher order corrections, related to the local structure of the network, appear.Comment: 12 pages, 7 figure
    • …
    corecore