184 research outputs found

    Virtual visual cues:vice or virtue?

    Get PDF

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    Evaluating the impact of intracortical microstimulation on distant cortical brain regions for neuroprosthetic applications

    Get PDF
    Enhancing functional motor recovery after localized brain injury is a widely recognized priority in healthcare as disorders of the nervous system that cause motor impairment, such as stroke, are among the most common causes of adult-onset disability. Restoring physiological function in a dysfunctional brain to improve quality of life is a primary challenge in scientific and clinical research and could be driven by innovative therapeutic approaches. Recently, techniques using brain stimulation methodologies have been employed to promote post-injury neuroplasticity for the restitution of motor function. One type of closed-loop stimulation, i.e., activity-dependent stimulation (ADS), has been shown to modify existing functional connectivity within either healthy or injured cerebral cortices and used to increase behavioral recovery following cortical injury. The aim of this PhD thesis is to characterize the electrophysiological correlates of such behavioral recovery in both healthy and injured cortical networks using in vivo animal models. We tested the ability of two different intracortical micro-stimulation protocols, i.e., ADS and its randomized open-loop version (RS), to potentiate cortico-cortical connections between two distant cortical locations in both anaesthetized and awake behaving rats. Thus, this dissertation has the following three main goals: 1) to investigate the ability of ADS to induce changes in intra-cortical activity in healthy anesthetized rats, 2) to characterize the electrophysiological signs of brain injury and evaluate the capability of ADS to promote electrophysiological changes in the damaged network, and 3) to investigate the long-term effects of stimulation by repeating the treatment for 21 consecutive days in healthy awake behaving animals. The results of this study indicate that closed-loop activity-dependent stimulation induced greater changes than open-loop random stimulation, further strengthening the idea that Hebbian-inspired protocols might potentiate cortico-cortical connections between distant brain areas. The implications of these results have the potential to lead to novel treatments for various neurological diseases and disorders and inspire new neurorehabilitation therapies

    Home monitoring of motor fluctuations in Parkinson's disease patients

    Get PDF
    In Parkinson's disease, motor fluctuations (worsening of tremor, bradykinesia, freezing of gait, postural instability) affect up to 70% of patients within 9 years of \textsc {l}-dopa therapy. Nevertheless, the assessment of motor fluctuations is difficult in a medical office, and is commonly based on poorly reliable self-reports. Hence, the use of wearable sensors is desirable. In this preliminary trial, we have investigated bradykinesia and freezing of gait—FOG—symptoms by means of inertial measurement units. To this purpose, we have employed a single smartphone on the patient's waist for FOG experiment (38 patients), and on patient thigh for LA (93 subjects). Given the sound performance achieved in this trial (AUC = 0.97 for FOG and AUC = 0.92 for LA), motor fluctuations may be estimated in domestic environments. To this end, we plan to perform measures and data processing on SensorTile, a tiny IoT module including several sensors, a microcontroller, a BlueTooth low-energy interface and microSD card, implementing an electronic diary of motor fluctuations, posture and dyskinesia during activity of daily living
    • …
    corecore