602 research outputs found

    An Integrative Remote Sensing Application of Stacked Autoencoder for Atmospheric Correction and Cyanobacteria Estimation Using Hyperspectral Imagery

    Get PDF
    Hyperspectral image sensing can be used to effectively detect the distribution of harmful cyanobacteria. To accomplish this, physical- and/or model-based simulations have been conducted to perform an atmospheric correction (AC) and an estimation of pigments, including phycocyanin (PC) and chlorophyll-a (Chl-a), in cyanobacteria. However, such simulations were undesirable in certain cases, due to the difficulty of representing dynamically changing aerosol and water vapor in the atmosphere and the optical complexity of inland water. Thus, this study was focused on the development of a deep neural network model for AC and cyanobacteria estimation, without considering the physical formulation. The stacked autoencoder (SAE) network was adopted for the feature extraction and dimensionality reduction of hyperspectral imagery. The artificial neural network (ANN) and support vector regression (SVR) were sequentially applied to achieve AC and estimate cyanobacteria concentrations (i.e., SAE-ANN and SAE-SVR). Further, the ANN and SVR models without SAE were compared with SAE-ANN and SAE-SVR models for the performance evaluations. In terms of AC performance, both SAE-ANN and SAE-SVR displayed reasonable accuracy with the Nash???Sutcliffe efficiency (NSE) > 0.7. For PC and Chl-a estimation, the SAE-ANN model showed the best performance, by yielding NSE values > 0.79 and > 0.77, respectively. SAE, with fine tuning operators, improved the accuracy of the original ANN and SVR estimations, in terms of both AC and cyanobacteria estimation. This is primarily attributed to the high-level feature extraction of SAE, which can represent the spatial features of cyanobacteria. Therefore, this study demonstrated that the deep neural network has a strong potential to realize an integrative remote sensing application

    Remote Sensing of Ecology, Biodiversity and Conservation: A Review from the Perspective of Remote Sensing Specialists

    Get PDF
    Remote sensing, the science of obtaining information via noncontact recording, has swept the fields of ecology, biodiversity and conservation (EBC). Several quality review papers have contributed to this field. However, these papers often discuss the issues from the standpoint of an ecologist or a biodiversity specialist. This review focuses on the spaceborne remote sensing of EBC from the perspective of remote sensing specialists, i.e., it is organized in the context of state-of-the-art remote sensing technology, including instruments and techniques. Herein, the instruments to be discussed consist of high spatial resolution, hyperspectral, thermal infrared, small-satellite constellation, and LIDAR sensors; and the techniques refer to image classification, vegetation index (VI), inversion algorithm, data fusion, and the integration of remote sensing (RS) and geographic information system (GIS)

    The potential for using remote sensing to quantify stress in and predict yield of sugarcane (Saccharum spp. hybrid)

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010

    Transforming scientific research and development in precision agriculture : the case of hyperspectral sensing and imaging : a thesis presented in partial fulfilment of the requirements for the degree of Doctor in Philosophy in Agriculture at Massey University, Manawatū, New Zealand. EMBARGOED until 30 September 2023.

    Get PDF
    Embargoed until 30 September 2023There has been increasing social and academic debate in recent times surrounding the arrival of agricultural big data. Capturing and responding to real world variability is a defining objective of the rapidly evolving field of precision agriculture (PA). While data have been central to knowledge-making in the field since its inception in the 1980s, research has largely operated in a data-scarce environment, constrained by time-consuming and expensive data collection methods. While there is a rich tradition of studying scientific practice within laboratories in other fields, PA researchers have rarely been the explicit focal point of detailed empirical studies, especially in the laboratory setting. The purpose of this thesis is to contribute to new knowledge of the influence of big data technologies through an ethnographic exploration of a working PA laboratory. The researcher spent over 30 months embedded as a participant observer of a small PA laboratory, where researchers work with nascent data rich remote sensing technologies. To address the research question: “How do the characteristics of technological assemblages affect PA research and development?” the ethnographic case study systematically identifies and responds to the challenges and opportunities faced by the science team as they adapt their scientific processes and resources to refine value from a new data ecosystem. The study describes the ontological characteristics of airborne hyperspectral sensing and imaging data employed by PA researchers. Observations of the researchers at work lead to a previously undescribed shift in the science process, where effort moves from the planning and performance of the data collection stage to the data processing and analysis stage. The thesis develops an argument that changing data characteristics are central to this shift in the scientific method researchers are employing to refine knowledge and value from research projects. Importantly, the study reveals that while researchers are working in a rapidly changing environment, there is little reflection on the implications of these changes on the practice of science-making. The study also identifies a disjunction to how science is done in the field, and what is reported. We discover that the practices that provide disciplinary ways of doing science are not established in this field and moments to learn are siloed because of commercial constraints the commercial structures imposed in this case study of contemporary PA research

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Monitoring the Sustainable Intensification of Arable Agriculture:the Potential Role of Earth Observation

    Get PDF
    Sustainable intensification (SI) has been proposed as a possible solution to the conflicting problems of meeting projected increases in food demand and preserving environmental quality. SI would provide necessary production increases while simultaneously reducing or eliminating environmental degradation, without taking land from competing demands. An important component of achieving these aims is the development of suitable methods for assessing the temporal variability of both the intensification and sustainability of agriculture. Current assessments rely on traditional data collection methods that produce data of limited spatial and temporal resolution. Earth Observation (EO) provides a readily accessible, long-term dataset with global coverage at various spatial and temporal resolutions. In this paper we demonstrate how EO could significantly contribute to SI assessments, providing opportunities to quantify agricultural intensity and environmental sustainability. We review an extensive body of research on EO-based methods to assess multiple indicators of both agricultural intensity and environmental sustainability. To date these techniques have not been combined to assess SI; here we identify the opportunities and initial steps required to achieve this. In this context, we propose the development of a set of essential sustainable intensification variables (ESIVs) that could be derived from EO data

    Integrated Applications of Geo-Information in Environmental Monitoring

    Get PDF
    This book focuses on fundamental and applied research on geo-information technology, notably optical and radar remote sensing and algorithm improvements, and their applications in environmental monitoring. This Special Issue presents ten high-quality research papers covering up-to-date research in land cover change and desertification analyses, geo-disaster risk and damage evaluation, mining area restoration assessments, the improvement and development of algorithms, and coastal environmental monitoring and object targeting. The purpose of this Special Issue is to promote exchanges, communications and share the research outcomes of scientists worldwide and to bridge the gap between scientific research and its applications for advancing and improving society

    An integrative approach using remote sensing and social analysis to identify different settlement types and the specific living conditions of its inhabitants

    Get PDF
    Someday in 2007, the world population reached a historical landmark: for the first time in human history, more than half of the world´s population was urban. A stagnation of this urbanization process is not in sight, so that by 2050, already 70 percent of humankind is projected to live in urban settlements. Over the last few decades, enormous migrations from rural hinterlands to steadily growing cities could be witnessed coming along with a dramatic growth of the world’s urban population. The speed and the scale of this growth, particularly in the so called less developed regions, are posing tremendous challenges to the countries concerned as well as to the world community. Within mega cities the strongest trends and the most extreme dimensions of the urbanization process can be observed. Their rapid growth results in uncontrolled processes of fragmentation which is often associated with pronounced poverty, social inequality, socio-spatial and political fragmentation, environmental degradation as well as population demands that outstrip environmental service capacity. For the majority of the mega cities a tremendous increase of informal structures and processes has to be observed. Consequentially informal settlements are growing, which represent those characteristic municipal areas being subject to particularly high population density, dynamics as well as marginalization. They have quickly become the most visible expression of urban poverty in developing world cities. Due to the extreme dynamics, the high complexity and huge spatial dimension of mega cities, urban administrations often only have an obsolete or not even existing data basis available to be at all informed about developments, trends and dimensions of urban growth and change. The knowledge about the living conditions of the residents is correspondingly very limited, incomplete and not up to date. Traditional methods such as statistical and regional analyses or fieldwork are no longer capable to capture such urban process. New data sources and monitoring methodologies are required in order to provide an up to date information basis as well as planning strate¬gies to enable sustainable developments and to simplify planning processes in complex urban structures. This research shall seize the described problem and aims to make a contribution to the requirements of monitoring fast developing mega cities. Against this background a methodology is developed to compensate the lack of socio-economic data and to deduce meaningful information on the living conditions of the inhabitants of mega cities. Neither social science methods alone nor the exclusive analysis of remote sensing data can solve the problem of the poor quality and outdated data base. Conventional social science methods cannot cope with the enormous developments and the tremendous growth as they are too labor-, as well as too time- and too cost-intensive. On the other hand, the physical discipline of remote sensing does not allow for direct conclusions on social parameters out of remote sensing images. The prime objective of this research is therefore the development of an integrative approach − bridging remote sensing and social analysis – in order to derive useful information about the living conditions in this specific case of the mega city Delhi and its inhabitants. Hence, this work is established in the overlapping range of the research topics remote sensing, urban areas and social science. Delhi, as India’s fast growing capital, meanwhile with almost 25 million residents the second largest city of the world, represents a prime example of a mega city. Since the second half of the 20th century, Delhi has been transformed from a modest town with mainly administrative and trade-related functions to a complex metropolis with a steep socio-economic gradient. The quality and amount of administrative and socio-economic data are poor and the knowledge about the circumstances of Delhi’s residents is correspondingly insufficient and outdated. Delhi represents therefore a perfectly suited study area for this research. In order to gather information about the living conditions within the different settlement types a methodology was developed and conducted to analyze the urban environment of the mega city Delhi. To identify different settlement types within the urban area, regarding the complex and heterogeneous appearance of the Delhi area, a semi-automated, object-oriented classification approach, based on segmentation derived image objects, was implemented. As the complete conceptual framework of this research, the classification methodology was developed based on a smaller representative training area at first and applied to larger test sites within Delhi afterwards. The object-oriented classification of VHR satellite imagery of the QuickBird sensor allowed for the identification of five different urban land cover classes within the municipal area of Delhi. In the focus of the image analysis is yet the identification of different settlement types and amongst these of informal settlements in particular. The results presented within this study demonstrate, that, based on density classes, the developed methodology is suitable to identify different settlement types and to detect informal settlements which are mega urban risk areas and thus potential residential zones of vulnerable population groups. The remote sensing derived land cover maps form the foundation for the integrative analysis concept and deliver there¬fore the general basis for the derivation of social attributes out of remote sensing data. For this purpose settlement characteristics (e.g., area of the settlement, average building size, and number of houses) are estimated from the classified QuickBird data and used to derive spatial information about the population distribution. In a next step, the derived information is combined with in-situ information on socio-economic conditions (e.g., family size, mean water consumption per capita/family) extracted from georeferenced questionnaires conducted during two field trips in Delhi. This combined data is used to characterize a given settlement type in terms of specific population and water related variables (e.g., population density, total water consumption). With this integrative methodology a catalogue can be compiled, comprising the living conditions of Delhi’s inhabitants living in specific settlement structures – and this in a quick, large-scaled, cost effective, by random or regularly repeatable way with a relatively small required data basis.The combined application of remotely sensed imagery and socio-economic data allows for the mapping, capturing and characterizing the socio-economic structures and dynamics within the mega city of Delhi, as well as it establishes a basis for the monitoring of the mega city of Delhi or certain areas within the city respectively by remote sensing. The opportunity to capture the condition of a mega city and to monitor its development in general enables the persons in charge to identify unbeneficial trends and to intervene accordingly from an urban planning perspective and to countersteer against a non-adequate supply of the inhabitants of different urban districts, primarily of those of informal settlements. This study is understood to be a first step to the development of methods which will help to identify and understand the different forms, actors and processes of urbanization in mega cities. It could support a more proactive and sustainable urban planning and land management – which in turn will increase the importance of urban remote sensing techniques. In this regard, the most obvious and direct beneficiaries are on the one hand the governmental agencies and urban planners and on the other hand, and which is possibly the most important goal, the inhabitants of the affected areas, whose living conditions can be monitored and improved as required. Only if the urban monitoring is quickly, inexpensively and easily available, it will be accepted and applied by the authorities, which in turn enables for the poorest to get the support they need. All in all, the listed benefits are very convincing and corroborate the combined use of remotely sensed and socio-economic data in mega city research
    corecore