77,759 research outputs found

    Findings of the 2016 Conference on Machine Translation.

    Get PDF
    This paper presents the results of the WMT16 shared tasks, which included five machine translation (MT) tasks (standard news, IT-domain, biomedical, multimodal, pronoun), three evaluation tasks (metrics, tuning, run-time estimation of MT quality), and an automatic post-editing task and bilingual document alignment task. This year, 102 MT systems from 24 institutions (plus 36 anonymized online systems) were submitted to the 12 translation directions in the news translation task. The IT-domain task received 31 submissions from 12 institutions in 7 directions and the Biomedical task received 15 submissions systems from 5 institutions. Evaluation was both automatic and manual (relative ranking and 100-point scale assessments). The quality estimation task had three subtasks, with a total of 14 teams, submitting 39 entries. The automatic post-editing task had a total of 6 teams, submitting 11 entries

    Findings of the 2016 Conference on Machine Translation (WMT16)

    Get PDF
    This paper presents the results of the WMT16 shared tasks, which included five machine translation (MT) tasks (standard news, IT-domain, biomedical, multimodal, pronoun), three evaluation tasks (metrics, tuning, run-time estimation of MT quality), and an automatic post-editing task and bilingual document alignment task. This year, 102 MT systems from 24 institutions (plus 36 anonymized online systems) were submitted to the 12 translation directions in the news translation task. The IT-domain task received 31 submissions from 12 institutions in 7 directions and the Biomedical task received 15 submissions systems from 5 institutions. Evaluation was both automatic and manual (relative ranking and 100-point scale assessments)

    Discriminative ridge regression algorithm for adaptation in statistical machine translation

    Full text link
    [EN] We present a simple and reliable method for estimating the log-linear weights of a state-of-the-art machine translation system, which takes advantage of the method known as discriminative ridge regression (DRR). Since inappropriate weight estimations lead to a wide variability of translation quality results, reaching a reliable estimate for such weights is critical for machine translation research. For this reason, a variety of methods have been proposed to reach reasonable estimates. In this paper, we present an algorithmic description and empirical results proving that DRR is able to provide comparable translation quality when compared to state-of-the-art estimation methods [i.e. MERT and MIRA], with a reduction in computational cost. Moreover, the empirical results reported are coherent across different corpora and language pairs.The research leading to these results were partially supported by projects CoMUN-HaT-TIN2015-70924-C2-1-R (MINECO/FEDER) and PROMETEO/2018/004. We also acknowledge NVIDIA for the donation of a GPU used in this work.Chinea-Ríos, M.; Sanchis-Trilles, G.; Casacuberta Nolla, F. (2019). Discriminative ridge regression algorithm for adaptation in statistical machine translation. Pattern Analysis and Applications. 22(4):1293-1305. https://doi.org/10.1007/s10044-018-0720-5S12931305224Barrachina S, Bender O, Casacuberta F, Civera J, Cubel E, Khadivi S, Lagarda A, Ney H, Tomás J, Vidal E et al (2009) Statistical approaches to computer-assisted translation. Comput Ling 35(1):3–28Bojar O, Buck C, Federmann C, Haddow B, Koehn P, Monz C, Post M, Specia L (eds) (2014) Proceedings of the ninth workshop on statistical machine translation. Association for Computational LinguisticsBrown PF, Pietra VJD, Pietra SAD, Mercer RL (1993) The mathematics of statistical machine translation: parameter estimation. Comput Ling 19:263–311Callison-Burch C, Koehn P, Monz C, Peterson K, Przybocki M, Zaidan OF (2010) Findings of the 2010 joint workshop on statistical machine translation and metrics for machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 17–53Chen B, Cherry C (2014) A systematic comparison of smoothing techniques for sentence-level bleu. In: Proceedings of the workshop on statistical machine translation, pp 362–367Cherry C, Foster G (2012) Batch tuning strategies for statistical machine translation. In: Proceedings of the North American chapter of the association for computational linguistics, pp 427–436Clark JH, Dyer C, Lavie A, Smith NA (2011) Better hypothesis testing for statistical machine translation: controlling for optimizer instability. In: Proceedings of the annual meeting of the association for computational linguistics, pp 176–181Crammer K, Dekel O, Keshet J, Shalev-Shwartz S, Singer Y (2006) Online passive-aggressive algorithms. J Mach Learn Res 7:551–585Hasler E, Haddow B, Koehn P (2011) Margin infused relaxed algorithm for moses. Prague Bull Math Ling 96:69–78Hopkins M, May J (2011) Tuning as ranking. In: Proceedings of the conference on empirical methods in natural language processing, pp 1352–1362Kneser R, Ney H (1995) Improved backing-off for m-gram language modeling. In: Proceedings of the international conference on acoustics, speech and signal processing, pp 181–184Koehn P (2005) Europarl: a parallel corpus for statistical machine translation. In: Proceedings of the machine translation summit, pp 79–86Koehn P (2010) Statistical machine translation. Cambridge University Press, CambridgeKoehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O, Constantin A, Herbst E (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 177–180Lavie MDA (2014) Meteor universal: language specific translation evaluation for any target language. In: Proceedings of the annual meeting of the association for computational linguistics, pp 376–387Marie B, Max A (2015) Multi-pass decoding with complex feature guidance for statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 554–559Martínez-Gómez P, Sanchis-Trilles G, Casacuberta F (2012) Online adaptation strategies for statistical machine translation in post-editing scenarios. Pattern Recogn 45(9):3193–3203Nakov P, Vogel S (2017) Robust tuning datasets for statistical machine translation. arXiv:1710.00346Neubig G, Watanabe T (2016) Optimization for statistical machine translation: a survey. Comput Ling 42(1):1–54Och FJ (2003) Minimum error rate training in statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 160–167Och FJ, Ney H (2003) A systematic comparison of various statistical alignment models. Comput Ling 29:19–51Papineni K, Roukos S, Ward T, Zhu WJ (2002) Bleu: a method for automatic evaluation of machine translation. In: Proceedings of the international conference on acoustics, speech and signal processing, pp 311–318Sanchis-Trilles G, Casacuberta F (2010) Log-linear weight optimisation via Bayesian adaptation in statistical machine translation. In: Proceedings of the annual meeting of the association for computational linguistics, pp 1077–1085Sanchis-Trilles G, Casacuberta F (2015) Improving translation quality stability using Bayesian predictive adaptation. Comput Speech Lang 34(1):1–17Snover M, Dorr B, Schwartz R, Micciulla L, Makhoul J (2006) A study of translation edit rate with targeted human annotation. In: Proceedings of the annual meeting of the association for machine translation in the Americas, pp 223–231Sokolov A, Yvon F (2011) Minimum error rate training semiring. In: Proceedings of the annual conference of the European association for machine translation, pp 241–248Stauffer C, Grimson WEL (2000) Learning patterns of activity using real-time tracking. Pattern Anal Mach Intell 22(8):747–757Stolcke A (2002) Srilm—an extensible language modeling toolkit. In: Proceedings of the international conference on spoken language processing, pp 901–904Tiedemann J (2009) News from opus—a collection of multilingual parallel corpora with tools and interfaces. In: Proceedings of the recent advances in natural language processing, pp 237–248Tiedemann J (2012) Parallel data, tools and interfaces in opus. In: Proceedings of the language resources and evaluation conference, pp 2214–221

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Findings of the 2019 Conference on Machine Translation (WMT19)

    Get PDF
    This paper presents the results of the premier shared task organized alongside the Conference on Machine Translation (WMT) 2019. Participants were asked to build machine translation systems for any of 18 language pairs, to be evaluated on a test set of news stories. The main metric for this task is human judgment of translation quality. The task was also opened up to additional test suites to probe specific aspects of translation
    • …
    corecore