4,127 research outputs found

    Cut Tree Construction from Massive Graphs

    Full text link
    The construction of cut trees (also known as Gomory-Hu trees) for a given graph enables the minimum-cut size of the original graph to be obtained for any pair of vertices. Cut trees are a powerful back-end for graph management and mining, as they support various procedures related to the minimum cut, maximum flow, and connectivity. However, the crucial drawback with cut trees is the computational cost of their construction. In theory, a cut tree is built by applying a maximum flow algorithm for nn times, where nn is the number of vertices. Therefore, naive implementations of this approach result in cubic time complexity, which is obviously too slow for today's large-scale graphs. To address this issue, in the present study, we propose a new cut-tree construction algorithm tailored to real-world networks. Using a series of experiments, we demonstrate that the proposed algorithm is several orders of magnitude faster than previous algorithms and it can construct cut trees for billion-scale graphs.Comment: Short version will appear at ICDM'1

    The Salesman's Improved Tours for Fundamental Classes

    Full text link
    Finding the exact integrality gap α\alpha for the LP relaxation of the metric Travelling Salesman Problem (TSP) has been an open problem for over thirty years, with little progress made. It is known that 4/3α3/24/3 \leq \alpha \leq 3/2, and a famous conjecture states α=4/3\alpha = 4/3. For this problem, essentially two "fundamental" classes of instances have been proposed. This fundamental property means that in order to show that the integrality gap is at most ρ\rho for all instances of metric TSP, it is sufficient to show it only for the instances in the fundamental class. However, despite the importance and the simplicity of such classes, no apparent effort has been deployed for improving the integrality gap bounds for them. In this paper we take a natural first step in this endeavour, and consider the 1/21/2-integer points of one such class. We successfully improve the upper bound for the integrality gap from 3/23/2 to 10/710/7 for a superclass of these points, as well as prove a lower bound of 4/34/3 for the superclass. Our methods involve innovative applications of tools from combinatorial optimization which have the potential to be more broadly applied

    Algorithmic Applications of Baur-Strassen's Theorem: Shortest Cycles, Diameter and Matchings

    Full text link
    Consider a directed or an undirected graph with integral edge weights from the set [-W, W], that does not contain negative weight cycles. In this paper, we introduce a general framework for solving problems on such graphs using matrix multiplication. The framework is based on the usage of Baur-Strassen's theorem and of Strojohann's determinant algorithm. It allows us to give new and simple solutions to the following problems: * Finding Shortest Cycles -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for finding shortest cycles in undirected and directed graphs. For directed graphs (and undirected graphs with non-negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-Williams. On the other hand, no algorithm working in \tilde{O}(Wn^{\omega}) time was previously known for undirected graphs with negative weights. Furthermore our algorithm for a given directed or undirected graph detects whether it contains a negative weight cycle within the same running time. * Computing Diameter and Radius -- We give a simple \tilde{O}(Wn^{\omega}) time algorithm for computing a diameter and radius of an undirected or directed graphs. To the best of our knowledge no algorithm with this running time was known for undirected graphs with negative weights. * Finding Minimum Weight Perfect Matchings -- We present an \tilde{O}(Wn^{\omega}) time algorithm for finding minimum weight perfect matchings in undirected graphs. This resolves an open problem posted by Sankowski in 2006, who presented such an algorithm but only in the case of bipartite graphs. In order to solve minimum weight perfect matching problem we develop a novel combinatorial interpretation of the dual solution which sheds new light on this problem. Such a combinatorial interpretation was not know previously, and is of independent interest.Comment: To appear in FOCS 201

    Log-space Algorithms for Paths and Matchings in k-trees

    Get PDF
    Reachability and shortest path problems are NL-complete for general graphs. They are known to be in L for graphs of tree-width 2 [JT07]. However, for graphs of tree-width larger than 2, no bound better than NL is known. In this paper, we improve these bounds for k-trees, where k is a constant. In particular, the main results of our paper are log-space algorithms for reachability in directed k-trees, and for computation of shortest and longest paths in directed acyclic k-trees. Besides the path problems mentioned above, we also consider the problem of deciding whether a k-tree has a perfect macthing (decision version), and if so, finding a perfect match- ing (search version), and prove that these two problems are L-complete. These problems are known to be in P and in RNC for general graphs, and in SPL for planar bipartite graphs [DKR08]. Our results settle the complexity of these problems for the class of k-trees. The results are also applicable for bounded tree-width graphs, when a tree-decomposition is given as input. The technique central to our algorithms is a careful implementation of divide-and-conquer approach in log-space, along with some ideas from [JT07] and [LMR07].Comment: Accepted in STACS 201
    corecore