6,302 research outputs found

    DP-LTOD: Differential Privacy Latent Trajectory Community Discovering Services over Location-Based Social Networks

    Full text link
    IEEE Community detection for Location-based Social Networks (LBSNs) has been received great attention mainly in the field of large-scale Wireless Communication Networks. In this paper, we present a Differential Privacy Latent Trajectory cOmmunity Discovering (DP-LTOD) scheme, which obfuscates original trajectory sequences into differential privacy-guaranteed trajectory sequences for trajectory privacy-preserving, and discovers latent trajectory communities through clustering the uploaded trajectory sequences. Different with traditional trajectory privacy-preserving methods, we first partition original trajectory sequence into different segments. Then, the suitable locations and segments are selected to constitute obfuscated trajectory sequence. Specifically, we formulate the trajectory obfuscation problem to select an optimal trajectory sequence which has the smallest difference with original trajectory sequence. In order to prevent privacy leakage, we add Laplace noise and exponential noise to the outputs during the stages of location obfuscation matrix generation and trajectory sequence function generation, respectively. Through formal privacy analysis,we prove that DP-LTOD scheme can guarantee \epsilon-differential private. Moreover, we develop a trajectory clustering algorithm to classify the trajectories into different kinds of clusters according to semantic distance and geographical distance. Extensive experiments on two real-world datasets illustrate that our DP-LTOD scheme can not only discover latent trajectory communities, but also protect user privacy from leaking

    Trajectory data mining: A review of methods and applications

    Get PDF
    The increasing use of location-aware devices has led to an increasing availability of trajectory data. As a result, researchers devoted their efforts to developing analysis methods including different data mining methods for trajectories. However, the research in this direction has so far produced mostly isolated studies and we still lack an integrated view of problems in applications of trajectory mining that were solved, the methods used to solve them, and applications using the obtained solutions. In this paper, we first discuss generic methods of trajectory mining and the relationships between them. Then, we discuss and classify application problems that were solved using trajectory data and relate them to the generic mining methods that were used and real world applications based on them. We classify trajectory-mining application problems under major problem groups based on how they are related. This classification of problems can guide researchers in identifying new application problems. The relationships between the methods together with the association between the application problems and mining methods can help researchers in identifying gaps between methods and inspire them to develop new methods. This paper can also guide analysts in choosing a suitable method for a specific problem. The main contribution of this paper is to provide an integrated view relating applications of mining trajectory data and the methods used

    Time-aware metric embedding with asymmetric projection for successive POI recommendation

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Successive Point-of-Interest (POI) recommendation aims to recommend next POIs for a given user based on this user’s current location. Indeed, with the rapid growth of Location-based Social Networks (LBSNs), successive POI recommendation has become an important and challenging task, since it can help to meet users’ dynamic interests based on their recent check-in behaviors. While some efforts have been made for this task, most of them do not capture the following properties: 1) The transition between consecutive POIs in user check-in sequences presents asymmetric property, however existing approaches usually assume the forward and backward transition probabilities between a POI pair are symmetric. 2) Users usually prefer different successive POIs at different time, but most existing studies do not consider this dynamic factor. To this end, in this paper, we propose a time-aware metric embedding approach with asymmetric projection (referred to as MEAP-T) for successive POI recommendation, which takes the above two properties into consideration. In addition, we exploit three latent Euclidean spaces to project the POI-POI, POI-user, and POI-time relationships. Finally, the experimental results on two real-world datasets show MEAP-T outperforms the state-of-the-art methods in terms of both precision and recall
    • …
    corecore