486 research outputs found

    Motion Planning for Unlabeled Discs with Optimality Guarantees

    Full text link
    We study the problem of path planning for unlabeled (indistinguishable) unit-disc robots in a planar environment cluttered with polygonal obstacles. We introduce an algorithm which minimizes the total path length, i.e., the sum of lengths of the individual paths. Our algorithm is guaranteed to find a solution if one exists, or report that none exists otherwise. It runs in time O~(m4+m2n2)\tilde{O}(m^4+m^2n^2), where mm is the number of robots and nn is the total complexity of the workspace. Moreover, the total length of the returned solution is at most OPT+4m\text{OPT}+4m, where OPT is the optimal solution cost. To the best of our knowledge this is the first algorithm for the problem that has such guarantees. The algorithm has been implemented in an exact manner and we present experimental results that attest to its efficiency

    Efficient Multi-Robot Motion Planning for Unlabeled Discs in Simple Polygons

    Full text link
    We consider the following motion-planning problem: we are given mm unit discs in a simple polygon with nn vertices, each at their own start position, and we want to move the discs to a given set of mm target positions. Contrary to the standard (labeled) version of the problem, each disc is allowed to be moved to any target position, as long as in the end every target position is occupied. We show that this unlabeled version of the problem can be solved in O(nlogn+mn+m2)O(n\log n+mn+m^2) time, assuming that the start and target positions are at least some minimal distance from each other. This is in sharp contrast to the standard (labeled) and more general multi-robot motion-planning problem for discs moving in a simple polygon, which is known to be strongly NP-hard

    Two-Dimensional Pursuit-Evasion in a Compact Domain with Piecewise Analytic Boundary

    Full text link
    In a pursuit-evasion game, a team of pursuers attempt to capture an evader. The players alternate turns, move with equal speed, and have full information about the state of the game. We consider the most restictive capture condition: a pursuer must become colocated with the evader to win the game. We prove two general results about pursuit-evasion games in topological spaces. First, we show that one pursuer has a winning strategy in any CAT(0) space under this restrictive capture criterion. This complements a result of Alexander, Bishop and Ghrist, who provide a winning strategy for a game with positive capture radius. Second, we consider the game played in a compact domain in Euclidean two-space with piecewise analytic boundary and arbitrary Euler characteristic. We show that three pursuers always have a winning strategy by extending recent work of Bhadauria, Klein, Isler and Suri from polygonal environments to our more general setting.Comment: 21 pages, 6 figure

    An approximation algorithm for d

    Full text link
    corecore