3,608 research outputs found

    Timely Data Delivery in a Realistic Bus Network

    Get PDF
    Abstract—WiFi-enabled buses and stops may form the backbone of a metropolitan delay tolerant network, that exploits nearby communications, temporary storage at stops, and predictable bus mobility to deliver non-real time information. This paper studies the problem of how to route data from its source to its destination in order to maximize the delivery probability by a given deadline. We assume to know the bus schedule, but we take into account that randomness, due to road traffic conditions or passengers boarding and alighting, affects bus mobility. We propose a simple stochastic model for bus arrivals at stops, supported by a study of real-life traces collected in a large urban network. A succinct graph representation of this model allows us to devise an optimal (under our model) single-copy routing algorithm and then extend it to cases where several copies of the same data are permitted. Through an extensive simulation study, we compare the optimal routing algorithm with three other approaches: minimizing the expected traversal time over our graph, minimizing the number of hops a packet can travel, and a recently-proposed heuristic based on bus frequencies. Our optimal algorithm outperforms all of them, but most of the times it essentially reduces to minimizing the expected traversal time. For values of deadlines close to the expected delivery time, the multi-copy extension requires only 10 copies to reach almost the performance of the costly flooding approach. I

    A GIS based multi-modal multiple optimal path transit advanced traveler information system

    Get PDF
    A method for the design and use of a Transit Advanced Traveler Information System (TATIS) using an off-the-shelf Geographic Information System (GIS) is developed in this thesis. The research design included: 1) representing multi-modal transit networks in a digital form with schedule databases; 2) development of a multiple optimal path algorithm that takes into account walking transfers using published time schedules; 3) incorporating user preferences and penalties in the algorithm; 4) development of a user-interface with suitable output capabilities; 5) using the prototype for sample inquiries giving performance measures. This prototype was developed using the Arc/Info GIS developed by ESRI, Inc. The principal results of the research demonstrated the effectiveness and robustness of the TATIS prototype with respect to the five previously mentioned issues. Areas of future improvement and research focus on performance measures and added functionality

    Intermodal Path Algorithm for Time-Dependent Auto Network and Scheduled Transit Service

    Get PDF
    A simple but efficient algorithm is proposed for finding the optimal path in an intermodal urban transportation network. The network is a general transportation network with multiple modes (auto, bus, rail, walk, etc.) divided into the two major categories of private and public, with proper transfer constraints. The goal was to find the optimal path according to the generalized cost, including private-side travel cost, public-side travel cost, and transfer cost. A detailed network model of transfers between modes was used to improve the accounting of travel times during these transfers. The intermodal path algorithm was a sequential application of specific cases of transit and auto shortest paths and resulted in the optimal intermodal path, with the optimal park-and-ride location for transferring from private to public modes. The computational complexity of the algorithm was shown to be a significant improvement over existing algorithms. The algorithm was applied to a real network within a dynamic traffic and transit assignment procedure and integrated with a sequential activity choice model

    Study on k-shortest paths with behavioral impedance domain from the intermodal public transportation system perspective

    Get PDF
    Behavioral impedance domain consists of a theory on route planning for pedestrians, within which constraint management is considered. The goal of this paper is to present the k-shortest path model using the behavioral impedance approach. After the mathematical model building, optimization problem and resolution problem by a behavioral impedance algorithm, it is discussed how behavioral impedance cost function is embedded in the k-shortest path model. From the pedestrian's route planning perspective, the behavioral impedance cost function could be used to calculate best subjective paths in the objective way.Postprint (published version
    corecore