1,849 research outputs found

    Cyclic classes and attraction cones in max algebra

    Full text link
    In max algebra it is well-known that the sequence A^k, with A an irreducible square matrix, becomes periodic at sufficiently large k. This raises a number of questions on the periodic regime of A^k and A^k x, for a given vector x. Also, this leads to the concept of attraction cones in max algebra, by which we mean sets of vectors whose ultimate orbit period does not exceed a given number. This paper shows that some of these questions can be solved by matrix squaring (A,A^2,A^4, ...), analogously to recent findings concerning the orbit period in max-min algebra. Hence the computational complexity of such problems is of the order O(n^3 log n). The main idea is to apply an appropriate diagonal similarity scaling A -> X^{-1}AX, called visualization scaling, and to study the role of cyclic classes of the critical graph. For powers of a visualized matrix in the periodic regime, we observe remarkable symmetry described by circulants and their rectangular generalizations. We exploit this symmetry to derive a concise system of equations for attraction cpne, and we present an algorithm which computes the coefficients of the system.Comment: 38 page

    The cyclic sieving phenomenon: a survey

    Full text link
    The cyclic sieving phenomenon was defined by Reiner, Stanton, and White in a 2004 paper. Let X be a finite set, C be a finite cyclic group acting on X, and f(q) be a polynomial in q with nonnegative integer coefficients. Then the triple (X,C,f(q)) exhibits the cyclic sieving phenomenon if, for all g in C, we have # X^g = f(w) where # denotes cardinality, X^g is the fixed point set of g, and w is a root of unity chosen to have the same order as g. It might seem improbable that substituting a root of unity into a polynomial with integer coefficients would have an enumerative meaning. But many instances of the cyclic sieving phenomenon have now been found. Furthermore, the proofs that this phenomenon hold often involve interesting and sometimes deep results from representation theory. We will survey the current literature on cyclic sieving, providing the necessary background about representations, Coxeter groups, and other algebraic aspects as needed.Comment: 48 pages, 3 figures, the sedcond version contains numerous changes suggested by colleagues and the referee. To appear in the London Mathematical Society Lecture Note Series. The third version has a few smaller change

    On visualisation scaling, subeigenvectors and Kleene stars in max algebra

    Get PDF
    The purpose of this paper is to investigate the interplay arising between max algebra, convexity and scaling problems. The latter, which have been studied in nonnegative matrix theory, are strongly related to max algebra. One problem is strict visualisation scaling, which means finding, for a given nonnegative matrix A, a diagonal matrix X such that all elements of X^{-1}AX are less than or equal to the maximum cycle geometric mean of A, with strict inequality for the entries which do not lie on critical cycles. In this paper such scalings are described by means of the max-algebraic subeigenvectors and Kleene stars of nonnegative matrices as well as by some concepts of convex geometry.Comment: 22 page
    corecore