6 research outputs found

    Simplifying Multiple Sums in Difference Fields

    Full text link
    In this survey article we present difference field algorithms for symbolic summation. Special emphasize is put on new aspects in how the summation problems are rephrased in terms of difference fields, how the problems are solved there, and how the derived results in the given difference field can be reinterpreted as solutions of the input problem. The algorithms are illustrated with the Mathematica package \SigmaP\ by discovering and proving new harmonic number identities extending those from (Paule and Schneider, 2003). In addition, the newly developed package \texttt{EvaluateMultiSums} is introduced that combines the presented tools. In this way, large scale summation problems for the evaluation of Feynman diagrams in QCD (Quantum ChromoDynamics) can be solved completely automatically.Comment: Uses svmult.cls, to appear as contribution in the book "Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions" (www.Springer.com

    A Refined Difference Field Theory for Symbolic Summation

    Get PDF
    In this article we present a refined summation theory based on Karr's difference field approach. The resulting algorithms find sum representations with optimal nested depth. For instance, the algorithms have been applied successively to evaluate Feynman integrals from Perturbative Quantum Field Theory.Comment: Uses elseart.cls and yjsco.st
    corecore