699 research outputs found

    Evaluating genetic traceability methods for captive bred marine fish and their applications in fisheries management and wildlife forensics

    Get PDF
    Growing demands for marine fish products is leading to increased pressure on already depleted wild populations and a rise in the aquaculture production. Consequently, more captive bred fish are released into the wild through accidental escape or deliberate restocking, stock enhancement and sea ranching programs. The increased mixing of captive bred fish with wild conspecifics may affect the ecological and/or genetic integrity of wild fish populations. From a fisheries management perspective unambiguous identification tools for captive bred fish will be highly valuable to manage risks. Additionally there is great potential to use these tools in wildlife forensics (i.e. tracing back escapees to their origin and determining mislabelling of seafood products). Using SNP data from captive bred and wild populations of Atlantic cod (Gadus morhua L.) and sole (Solea solea L.), we explored the efficiency of population and parentage assignment techniques for the identification and tracing of captive bred fish. Simulated and empirical data were used to correct for stochastic genetic effects. Overall, parentage assignment performed well when a large effective population size characterizes the broodstock and escapees originate from early generations of captive breeding. Consequently, parentage assignments are particularly useful from a fisheries management perspective to monitor the effects of deliberate releases of captive bred fish on wild populations. Population assignment proved to be more efficient after several generations of captive breeding, which makes it a useful method in forensic applications for well-established aquaculture species. We suggest the implementation of a case by case strategy when choosing the best method

    Applications of Molecular Markers in Fisheries and Aquaculture

    Get PDF
    Organisms are characterized by unique biological attributes which enhance their fitness and survival to a particular environment. The driving force for enhanced survival and fitness is the genetic variation inherent in an individual as well as in a population. The information regarding genetic diversity and variation has wide application in research on evolution, conservation and management of natural populations. The advent of DNA cloning and sequencing methods have contributed immensely to the development of molecular taxonomy and population genetics over the last 2 decades. These modern methods have revolutionized the field of molecular taxonomy and population genetics with improved analytical power and precision

    Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries

    Get PDF
    Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens

    Design and Implementation of Degenerate Microsatellite Primers for the Mammalian Clade

    Get PDF
    Microsatellites are popular genetic markers in molecular ecology, genetic mapping and forensics. Unfortunately, despite recent advances, the isolation of de novo polymorphic microsatellite loci often requires expensive and intensive groundwork. Primers developed for a focal species are commonly tested in a related, non-focal species of interest for the amplification of orthologous polymorphic loci; when successful, this approach significantly reduces cost and time of microsatellite development. However, transferability of polymorphic microsatellite loci decreases rapidly with increasing evolutionary distance, and this approach has shown its limits. Whole genome sequences represent an under-exploited resource to develop cross-species primers for microsatellites. Here we describe a three-step method that combines a novel in silico pipeline that we use to (1) identify conserved microsatellite loci from a multiple genome alignments, (2) design degenerate primer pairs, with (3) a simple PCR protocol used to implement these primers across species. Using this approach we developed a set of primers for the mammalian clade. We found 126,306 human microsatellites conserved in mammalian aligned sequences, and isolated 5,596 loci using criteria based on wide conservation. From a random subset of ∼1000 dinucleotide repeats, we designed degenerate primer pairs for 19 loci, of which five produced polymorphic fragments in up to 18 mammalian species, including the distinctly related marsupials and monotremes, groups that diverged from other mammals 120–160 million years ago. Using our method, many more cross-clade microsatellite loci can be harvested from the currently available genomic data, and this ability is set to improve exponentially as further genomes are sequenced

    Polymorphic Microsatellite markers with Egg Production Traits in local Chickens: Review

    Get PDF
     Egg production traits are quantitative trait in nature that control by regions of the genome are termed microsatellites that considered to be association with this trait. This review was aimed to provide information related to polymorphism egg production trait of local chickens and association with microsatellites markers

    Latin American aquatic mammals : an overview of 12 years focusing on molecular techniques applied to conservation

    Get PDF
    Ecological information useful for conservation purposes have benefitted from recent and rapid advancements in genetic techniques, revealing unknown aspects of behavior, natural history, population structure and demography of several aquatic mammal species, many of them with conservation concerns. Molecular markers have been used to define management units, to settle taxonomic uncertainties, to control illegal wildlife trade, among others, providing valuable information to decision-making to conserve and manage aquatic mammals. We review genetic studies applied to conservation-related issues involving natural populations of more than 40 species of aquatic mammals in Latin America, covering four taxonomic groups. The main goal was to assess which genetic approaches have been used and to identify gaps in genetic research relating to geographic areas and species. We reviewed studies published in peer-reviewed journals between 2011 and 2022, and found that most were focused on population structure, phylogeography, gene flow and dispersal movements. The review revealed that researchers need to increase and improve the knowledge in those species which face major conservation concern. Scarce findings were related to forensics and its application to wildlife trade. In the era of next-generation-sequencing techniques, just a few studies used genomics as a tool for monitoring gene diversity, an important goal to help us predict how species will cope with climate change events. Looking to the future we suggest which species, geographic areas and genetic studies should be prioritized in a scenario of climate change and increased human threats (e.g., fishery bycatch, habitat degradation, etc.) and the urgent need for conservation actions. Finally, we highlight the benefits of the collaborative works and the necessity of generating a conservation genetic network, with an open agenda to discuss the local and regional problematics. All in all, we strongly emphasize the generation of critical information towards the effective conservation and management of aquatic mammals in Latin America.Peer reviewe

    The landscape of human STR variation

    Get PDF
    Short tandem repeats are among the most polymorphic loci in the human genome. These loci play a role in the etiology of a range of genetic diseases and have been frequently utilized in forensics, population genetics, and genetic genealogy. Despite this plethora of applications, little is known about the variation of most STRs in the human population. Here, we report the largest-scale analysis of human STR variation to date. We collected information for nearly 700,000 STR loci across more than 1000 individuals in Phase 1 of the 1000 Genomes Project. Extensive quality controls show that reliable allelic spectra can be obtained for close to 90% of the STR loci in the genome. We utilize this call set to analyze determinants of STR variation, assess the human reference genome’s representation of STR alleles, find STR loci with common loss-of-function alleles, and obtain initial estimates of the linkage disequilibrium between STRs and common SNPs. Overall, these analyses further elucidate the scale of genetic variation beyond classical point mutations.American Society for Engineering Education. National Defense Science and Engineering Graduate Fellowshi

    Development of novel ssr molecular markers using a next-generation sequencing approach (Ddradseq) in stetsonia coryne (cactaceae)

    Get PDF
    The Cactaceae family is native to the American continent with several centers of diversity. In South America, one of these centers is the Central Andes and many species are considered to be threatened or vulnerable according to the International Union for Conservation of Nature (IUCN). Stetsonia Coryne is an emblematic giant columnar of the Chaco phytogeographic province. It has an extensive geographical distribution in many countries of the continent. However, to date there are no specific molecular markers for this species, neither reports of population genetic variability studies, such as for many cactus species. The lack of information is fundamentally due to the lack of molecular markers that allow these studies. In this work, by applying a Genotyping by Sequencing (GBS) technique, we developed polymorphic SSR markers for the Stetsonia coryne and evaluated their transferability to phylogenetically close species, in order to account for a robust panel of molecular markers for multispecies-studies within Cactaceae.Fil: Gutiérrez, Angela Verónica. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Escuela de Agronomía. Laboratorio de Investigaciones Botánicas; Argentina. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion En Ciencias Veterinarias y Agronomicas. Gerencia de Gestion Estrategica de Procesos Complementarios.; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Filippi, Carla Valeria. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion En Ciencias Veterinarias y Agronomicas. Gerencia de Gestion Estrategica de Procesos Complementarios.; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Aguirre, Natalia Cristina. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion En Ciencias Veterinarias y Agronomicas. Gerencia de Gestion Estrategica de Procesos Complementarios.; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Puebla, Andrea Fabiana. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion En Ciencias Veterinarias y Agronomicas. Gerencia de Gestion Estrategica de Procesos Complementarios.; ArgentinaFil: Acuña, Cintia Vanesa. Instituto Nacional de Tecnologia Agropecuaria. Centro de Investigacion En Ciencias Veterinarias y Agronomicas. Gerencia de Gestion Estrategica de Procesos Complementarios.; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Taboada, Gisel María. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Escuela de Agronomía. Laboratorio de Investigaciones Botánicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Ortega Baes, Francisco Pablo. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Escuela de Agronomía. Laboratorio de Investigaciones Botánicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; Argentin

    Microgeographic Population Genetic Structure of Baylisascaris Procyonis (Nematoda: Ascaroidae) in Western Michigan Indicates the Grand River is a Barrier to Gene Flow

    Get PDF
    We developed eight polymorphic microsatellites from the parasitic nematode Baylisascaris procyonis. Amplification of these loci in a sample of 74 worms collected from 10 raccoons in Western Michigan revealed significant population structure. Bayesian clustering indicates two subpopulations, one on either side of the Grand River which bisects the region sampled. Estimates of FST, and results from AMOVA and isolation by distance, further corroborate a scenario whereby the river is acting as a barrier to gene flow, a rather unusual finding given the high vagility of raccoons and microgeographic scale of the analysis. We describe one possible mechanism for how this pattern of structure could have become established
    corecore