6,143 research outputs found

    Large induced subgraphs via triangulations and CMSO

    Full text link
    We obtain an algorithmic meta-theorem for the following optimization problem. Let \phi\ be a Counting Monadic Second Order Logic (CMSO) formula and t be an integer. For a given graph G, the task is to maximize |X| subject to the following: there is a set of vertices F of G, containing X, such that the subgraph G[F] induced by F is of treewidth at most t, and structure (G[F],X) models \phi. Some special cases of this optimization problem are the following generic examples. Each of these cases contains various problems as a special subcase: 1) "Maximum induced subgraph with at most l copies of cycles of length 0 modulo m", where for fixed nonnegative integers m and l, the task is to find a maximum induced subgraph of a given graph with at most l vertex-disjoint cycles of length 0 modulo m. 2) "Minimum \Gamma-deletion", where for a fixed finite set of graphs \Gamma\ containing a planar graph, the task is to find a maximum induced subgraph of a given graph containing no graph from \Gamma\ as a minor. 3) "Independent \Pi-packing", where for a fixed finite set of connected graphs \Pi, the task is to find an induced subgraph G[F] of a given graph G with the maximum number of connected components, such that each connected component of G[F] is isomorphic to some graph from \Pi. We give an algorithm solving the optimization problem on an n-vertex graph G in time O(#pmc n^{t+4} f(t,\phi)), where #pmc is the number of all potential maximal cliques in G and f is a function depending of t and \phi\ only. We also show how a similar running time can be obtained for the weighted version of the problem. Pipelined with known bounds on the number of potential maximal cliques, we deduce that our optimization problem can be solved in time O(1.7347^n) for arbitrary graphs, and in polynomial time for graph classes with polynomial number of minimal separators

    Krausz dimension and its generalizations in special graph classes

    Get PDF
    A {\it krausz (k,m)(k,m)-partition} of a graph GG is the partition of GG into cliques, such that any vertex belongs to at most kk cliques and any two cliques have at most mm vertices in common. The {\it mm-krausz} dimension kdimm(G)kdim_m(G) of the graph GG is the minimum number kk such that GG has a krausz (k,m)(k,m)-partition. 1-krausz dimension is known and studied krausz dimension of graph kdim(G)kdim(G). In this paper we prove, that the problem "kdim(G)3""kdim(G)\leq 3" is polynomially solvable for chordal graphs, thus partially solving the problem of P. Hlineny and J. Kratochvil. We show, that the problem of finding mm-krausz dimension is NP-hard for every m1m\geq 1, even if restricted to (1,2)-colorable graphs, but the problem "kdimm(G)k""kdim_m(G)\leq k" is polynomially solvable for (,1)(\infty,1)-polar graphs for every fixed k,m1k,m\geq 1

    A polynomial algorithm for the k-cluster problem on interval graphs

    Full text link
    This paper deals with the problem of finding, for a given graph and a given natural number k, a subgraph of k nodes with a maximum number of edges. This problem is known as the k-cluster problem and it is NP-hard on general graphs as well as on chordal graphs. In this paper, it is shown that the k-cluster problem is solvable in polynomial time on interval graphs. In particular, we present two polynomial time algorithms for the class of proper interval graphs and the class of general interval graphs, respectively. Both algorithms are based on a matrix representation for interval graphs. In contrast to representations used in most of the previous work, this matrix representation does not make use of the maximal cliques in the investigated graph.Comment: 12 pages, 5 figure

    On Minimum Maximal Distance-k Matchings

    Full text link
    We study the computational complexity of several problems connected with finding a maximal distance-kk matching of minimum cardinality or minimum weight in a given graph. We introduce the class of kk-equimatchable graphs which is an edge analogue of kk-equipackable graphs. We prove that the recognition of kk-equimatchable graphs is co-NP-complete for any fixed k2k \ge 2. We provide a simple characterization for the class of strongly chordal graphs with equal kk-packing and kk-domination numbers. We also prove that for any fixed integer 1\ell \ge 1 the problem of finding a minimum weight maximal distance-22\ell matching and the problem of finding a minimum weight (21)(2 \ell - 1)-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of δlnV(G)\delta \ln |V(G)| unless P=NP\mathrm{P} = \mathrm{NP}, where δ\delta is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.Comment: 15 pages, 4 figure

    Ramsey numbers of cubes versus cliques

    Get PDF
    The cube graph Q_n is the skeleton of the n-dimensional cube. It is an n-regular graph on 2^n vertices. The Ramsey number r(Q_n, K_s) is the minimum N such that every graph of order N contains the cube graph Q_n or an independent set of order s. Burr and Erdos in 1983 asked whether the simple lower bound r(Q_n, K_s) >= (s-1)(2^n - 1)+1 is tight for s fixed and n sufficiently large. We make progress on this problem, obtaining the first upper bound which is within a constant factor of the lower bound.Comment: 26 page
    corecore