9,086 research outputs found

    Finding least fuel emission paths in a network with time-varying speeds

    Get PDF
    This article considers the problem of finding a route and schedule for a vehicle starting from a depot, visiting a set of customers, and returning to the depot, in a time-dependent network where the objective is to minimize the greenhouse gas emissions. In this formulation, the speeds of the vehicle as well as the routes chosen are decision variables subject to limits determined by the level of congestion on the roads at the time. Two methods are proposed to find the optimal strategy for a single route. One is a time-increment-based dynamic programming method, and the other is a new heuristic approach. In addition, a case study is carried out, which compares the performances of these methods, as well as the least polluting routes with the shortest time routes between two customer nodes

    Optimization of time-dependent routing problems considering dynamic paths and fuel consumption

    Get PDF
    Ces dernières années, le transport de marchandises est devenu un défi logistique à multiples facettes. L’immense volume de fret a considérablement augmenté le flux de marchandises dans tous les modes de transport. Malgré le rôle vital du transport de marchandises dans le développement économique, il a également des répercussions négatives sur l’environnement et la santé humaine. Dans les zones locales et régionales, une partie importante des livraisons de marchandises est transportée par camions, qui émettent une grande quantité de polluants. Le Transport routier de marchandises est un contributeur majeur aux émissions de gaz à effet de serre (GES) et à la consommation de carburant. Au Canada, les principaux réseaux routiers continuent de faire face à des problèmes de congestion. Pour réduire significativement l’impact des émissions de GES reliées au transport de marchandises sur l’environnement, de nouvelles stratégies de planification directement liées aux opérations de routage sont nécessaires aux niveaux opérationnel, environnemental et temporel. Dans les grandes zones urbaines, les camions doivent voyager à la vitesse imposée par la circulation. Les embouteillages ont des conséquences défavorables sur la vitesse, le temps de déplacement et les émissions de GES, notamment à certaines périodes de la journée. Cette variabilité de la vitesse dans le temps a un impact significatif sur le routage et la planification du transport. Dans une perspective plus large, notre recherche aborde les Problèmes de distribution temporels (Time-Dependent Distribution Problems – TDDP) en considérant des chemins dynamiques dans le temps et les émissions de GES. Considérant que la vitesse d’un véhicule varie en fonction de la congestion dans le temps, l’objectif est de minimiser la fonction de coût de transport total intégrant les coûts des conducteurs et des émissions de GES tout en respectant les contraintes de capacité et les restrictions de temps de service. En outre, les informations géographiques et de trafic peuvent être utilisées pour construire des multigraphes modélisant la flexibilité des chemins sur les grands réseaux routiers, en tant qu’extension du réseau classique des clients. Le réseau physique sous-jacent entre chaque paire de clients pour chaque expédition est explicitement considéré pour trouver des chemins de connexion. Les décisions de sélection de chemins complètent celles de routage, affectant le coût global, les émissions de GES, et le temps de parcours entre les nœuds. Alors que l’espace de recherche augmente, la résolution des Problèmes de distribution temporels prenant en compte les chemins dynamiques et les vitesses variables dans le temps offre une nouvelle possibilité d’améliorer l’efficacité des plans de transport... Mots clés : Routage dépendant du temps; chemins les plus rapides dépendant du temps; congestion; réseau routier; heuristique; émissions de gaz à effet de serre; modèles d’émission; apprentissage superviséIn recent years, freight transportation has evolved into a multi-faceted logistics challenge. The immense volume of freight has considerably increased the flow of commodities in all transport modes. Despite the vital role of freight transportation in the economic development, it also negatively impacts both the environment and human health. At the local and regional areas, a significant portion of goods delivery is transported by trucks, which emit a large amount of pollutants. Road freight transportation is a major contributor to greenhouse gas (GHG) emissions and to fuel consumption. To reduce the significant impact of freight transportation emissions on environment, new alternative planning and coordination strategies directly related to routing and scheduling operations are required at the operational, environmental and temporal dimensions. In large urban areas, trucks must travel at the speed imposed by traffic, and congestion events have major adverse consequences on speed level, travel time and GHG emissions particularly at certain periods of day. This variability in speed over time has a significant impact on routing and scheduling. From a broader perspective, our research addresses Time-Dependent Distribution Problems (TDDPs) considering dynamic paths and GHG emissions. Considering that vehicle speeds vary according to time-dependent congestion, the goal is to minimize the total travel cost function incorporating driver and GHG emissions costs while respecting capacity constraints and service time restrictions. Further, geographical and traffic information can be used to construct a multigraph modeling path flexibility on large road networks, as an extension to the classical customers network. The underlying physical sub-network between each pair of customers for each shipment is explicitly considered to find connecting road paths. Path selection decisions complement routing ones, impacting the overall cost, GHG emissions, the travel time between nodes, and thus the set of a feasible time-dependent least cost paths. While the search space increases, solving TDDPs considering dynamic paths and time-varying speeds may provide a new scope for enhancing the effectiveness of route plans. One way to reduce emissions is to consider congestion and being able to route traffic around it. Accounting for and avoiding congested paths is possible as the required traffic data is available and, at the same time, has a great potential for both energy and cost savings. Hence, we perform a large empirical analysis of historical traffic and shipping data. Therefore, we introduce the Time-dependent Quickest Path Problem with Emission Minimization, in which the objective function comprises GHG emissions, driver and congestion costs. Travel costs are impacted by traffic due to changing congestion levels depending on the time of the day, vehicle types and carried load. We also develop time-dependent lower and upper bounds, which are both accurate and fast to compute. Computational experiments are performed on real-life instances that incorporate the variation of traffic throughout the day. We then study the quality of obtained paths considering time-varying speeds over the one based only on fixed speeds... Keywords : Time-dependent routing; time-dependent quickest paths; traffic congestion; road network; heuristic; greenhouse gas emissions; emission models; supervised learning

    Minimizing the carbon emissions on road networks

    Get PDF
    The models and algorithms developed for transportation planning, vehicle routing, path finding and the software that utilize them are usually based on distance and constant travel times between the relevant locations and aim at minimizing total distance or travel time . However, constant travel time assumption is not realistic on road networks as the traffic conditions may vary from morning/evening rush hours to off-peak noon/night hours, from the weekends to business days, even from one season to another. Thus, distance/time based optimization does not exactly reflect the real fuel consumptions, hence the actual costs; neither can they be used to accurately account for the greenhouse gas (GHG) emissions. A distance/constant time based optimization model may even yield an infeasible solution when time-windows exist or the route length is time limited. In this study, we first analyze the peculiar characteristics of the Greenest Path Problem (GPP) where the objective is to find the least GHG generating path from an origin to a destination on the road network. We then propose a fast heuristic method for determining the greenest path, by incorporating fuel consumption and GHG emission objectives. Finally, we integrate the proposed algorithm into the Green Vehicle Routing Problem that minimizes the GHG emissions rather than the total distance or travel time. The developed heuristic is benchmarked against the existing algorithms by using synthetic traffic data on a real road network to illustrate potential savings and sustainability benefits

    The role of operational research in green freight transportation

    Get PDF
    Recent years have witnessed an increased awareness of the negative external impacts of freight transportation. The field of Operational Research (OR) has, particularly in the recent years, continued to contribute to alleviating the negative impacts through the use of various optimization models and solution techniques. This paper presents the basic principles behind and an overview of the existing body of recent research on ‘greening’ freight transportation using OR-based planning techniques. The particular focus is on studies that have been described for two heavily used modes for transporting freight across the globe, namely road (including urban and electric vehicles) and maritime transportation, although other modes are also briefly discussed

    Eco-reliable path finding in time-variant and stochastic networks

    Get PDF
    This paper addresses a route guidance problem for finding the most eco-reliable path in time-variant and stochastic networks such that travelers can arrive at the destination with the maximum on-time probability while meeting vehicle emission standards imposed by government regulators. To characterize the dynamics and randomness of transportation networks, the link travel times and emissions are assumed to be time-variant random variables correlated over the entire network. A 0–1 integer mathematical programming model is formulated to minimize the probability of late arrival by simultaneously considering the least expected emission constraint. Using the Lagrangian relaxation approach, the primal model is relaxed into a dualized model which is further decomposed into two simple sub-problems. A sub-gradient method is developed to reduce gaps between upper and lower bounds. Three sets of numerical experiments are tested to demonstrate the efficiency and performance of our proposed model and algorithm

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    The multi-objective Steiner pollution-routing problem on congested urban road networks

    Get PDF
    This paper introduces the Steiner Pollution-Routing Problem (SPRP) as a realistic variant of the PRP that can take into account the real operating conditions of urban freight distribution. The SPRP is a multi-objective, time and load dependent, fleet size and mix PRP, with time windows, flexible departure times, and multi-trips on congested urban road networks, that aims at minimising three objective functions pertaining to (i) vehicle hiring cost, (ii) total amount of fuel consumed, and (iii) total makespan (duration) of the routes. The paper focuses on a key complication arising from emissions minimisation in a time and load dependent setting, corresponding to the identification of the full set of the eligible road-paths between consecutive truck visits a priori, and to tackle the issue proposes new combinatorial results leading to the development of an exact Path Elimination Procedure (PEP). A PEP-based Mixed Integer Programming model is further developed for the SPRP and embedded within an efficient mathematical programming technique to generate the full set of the non-dominated points on the Pareto frontier of the SPRP. The proposed model considers truck instantaneous Acceleration/Deceleration (A/D) rates in the fuel consumption estimation, and to address the possible lack of such data at the planning stage, a new model for the construction of reliable synthetic spatiotemporal driving cycles from available macroscopic traffic speed data is introduced. Several analyses are conducted to: (i) demonstrate the added value of the proposed approach, (ii) exhibit the trade-off between the business and environmental objectives on the Pareto front of the SPRP, (iii) show the benefits of using multiple trips, and (iv) verify the reliability of the proposed model for the generation of driving cycles. A real road network based on the Chicago's arterial streets is also used for further experimentation with the proposed PEP algorithm. © 2019 Elsevier Lt

    Experimental Modeling of NOx and PM Generation from Combustion of Various Biodiesel Blends for Urban Transport Buses

    Get PDF
    Biodiesel has diverse sources of feedstock and the amount and composition of its emissions vary significantly depending on combustion conditions. Results of laboratory and field tests reveal that nitrogen oxides (NOx) and particulate matter (PM) emissions from biodiesel are influenced more by combustion conditions than emissions from regular diesel. Therefore, NOx and PM emissions documented through experiments and modeling studies are the primary focus of this investigation. In addition, a comprehensive analysis of the feedstock-related combustion characteristics and pollutants are investigated. Research findings verify that the oxygen contents, the degree of unsaturation, and the size of the fatty acids in biodiesel are the most important factors that determine the amounts and compositions of NOx and PM emissions

    Optimization of route choice, speeds and stops in time-varying networks for fuel-efficient truck journeys

    Get PDF
    A method is presented for the real-time optimal control of the journey of a truck, travelling between a pair of pick-up/drop-off locations in a time-varying traffic network, in order to reduce fuel consumption. The method, when applied during the journey, encapsulates the choice of route, choice of speeds on the links, and choice of stop locations/durations; when applied pre-trip, it additionally incorporates choice of departure time. The problem is formulated by using a modified form of space-time extended network, in such a way that a shortest path in this network corresponds to an optimal choice of not only route, stops and (when relevant) departure time, but also of speeds. A series of simple illustrative examples are presented to illustrate the formulation. Finally, the method is applied to a realistic-size case study
    • …
    corecore