2,099 research outputs found

    On Minimum Maximal Distance-k Matchings

    Full text link
    We study the computational complexity of several problems connected with finding a maximal distance-kk matching of minimum cardinality or minimum weight in a given graph. We introduce the class of kk-equimatchable graphs which is an edge analogue of kk-equipackable graphs. We prove that the recognition of kk-equimatchable graphs is co-NP-complete for any fixed kβ‰₯2k \ge 2. We provide a simple characterization for the class of strongly chordal graphs with equal kk-packing and kk-domination numbers. We also prove that for any fixed integer β„“β‰₯1\ell \ge 1 the problem of finding a minimum weight maximal distance-2β„“2\ell matching and the problem of finding a minimum weight (2β„“βˆ’1)(2 \ell - 1)-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of Ξ΄ln⁑∣V(G)∣\delta \ln |V(G)| unless P=NP\mathrm{P} = \mathrm{NP}, where Ξ΄\delta is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.Comment: 15 pages, 4 figure

    Exploiting c\mathbf{c}-Closure in Kernelization Algorithms for Graph Problems

    Full text link
    A graph is c-closed if every pair of vertices with at least c common neighbors is adjacent. The c-closure of a graph G is the smallest number such that G is c-closed. Fox et al. [ICALP '18] defined c-closure and investigated it in the context of clique enumeration. We show that c-closure can be applied in kernelization algorithms for several classic graph problems. We show that Dominating Set admits a kernel of size k^O(c), that Induced Matching admits a kernel with O(c^7*k^8) vertices, and that Irredundant Set admits a kernel with O(c^(5/2)*k^3) vertices. Our kernelization exploits the fact that c-closed graphs have polynomially-bounded Ramsey numbers, as we show

    Strong games played on random graphs

    Get PDF
    In a strong game played on the edge set of a graph G there are two players, Red and Blue, alternating turns in claiming previously unclaimed edges of G (with Red playing first). The winner is the first one to claim all the edges of some target structure (such as a clique, a perfect matching, a Hamilton cycle, etc.). It is well known that Red can always ensure at least a draw in any strong game, but finding explicit winning strategies is a difficult and a quite rare task. We consider strong games played on the edge set of a random graph G ~ G(n,p) on n vertices. We prove, for sufficiently large nn and a fixed constant 0 < p < 1, that Red can w.h.p win the perfect matching game on a random graph G ~ G(n,p)
    • …
    corecore