5 research outputs found

    The smoothed number of {P}areto-optimal solutions in bicriteria integer optimization

    Get PDF

    Smoothed Analysis of Selected Optimization Problems and Algorithms

    Get PDF
    Optimization problems arise in almost every field of economics, engineering, and science. Many of these problems are well-understood in theory and sophisticated algorithms exist to solve them efficiently in practice. Unfortunately, in many cases the theoretically most efficient algorithms perform poorly in practice. On the other hand, some algorithms are much faster than theory predicts. This discrepancy is a consequence of the pessimism inherent in the framework of worst-case analysis, the predominant analysis concept in theoretical computer science. We study selected optimization problems and algorithms in the framework of smoothed analysis in order to narrow the gap between theory and practice. In smoothed analysis, an adversary specifies the input, which is subsequently slightly perturbed at random. As one example we consider the successive shortest path algorithm for the minimumcost flow problem. While in the worst case the successive shortest path algorithm takes exponentially many steps to compute a minimum-cost flow, we show that its running time is polynomial in the smoothed setting. Another problem studied in this thesis is makespan minimization for scheduling with related machines. It seems to be unlikely that there exist fast algorithms to solve this problem exactly. This is why we consider three approximation algorithms: the jump algorithm, the lex-jump algorithm, and the list scheduling algorithm. In the worst case, the approximation guarantees of these algorithms depend on the number of machines. We show that there is no such dependence in smoothed analysis. We also apply smoothed analysis to multicriteria optimization problems. In particular, we consider integer optimization problems with several linear objectives that have to be simultaneously minimized. We derive a polynomial upper bound for the size of the set of Pareto-optimal solutions contrasting the exponential worst-case lower bound. As the icing on the cake we find that the insights gained from our smoothed analysis of the running time of the successive shortest path algorithm lead to the design of a randomized algorithm for finding short paths between two given vertices of a polyhedron. We see this result as an indication that, in future, smoothed analysis might also result in the development of fast algorithms.Optimierungsprobleme treten in allen wirtschaftlichen, naturwissenschaftlichen und technischen Gebieten auf. Viele dieser Probleme sind ausführlich untersucht und aus praktischer Sicht effizient lösbar. Leider erweisen sich in vielen Fällen die theoretisch effizientesten Algorithmen in der Praxis als ungeeignet. Auf der anderen Seite sind einige Algorithmen viel schneller als die Theorie vorhersagt. Dieser scheinbare Widerspruch resultiert aus dem Pessimismus, der dem in der theoretischen Informatik vorherrschenden Analysekonzept, der Worst-Case-Analyse, innewohnt. Um die Lücke zwischen Theorie und Praxis zu verkleinern, untersuchen wir ausgewählte Optimierungsprobleme und Algorithmen auf gegnerisch vorgegebenen Instanzen, die durch ein leichtes Zufallsrauschen gestört werden. Solche perturbierten Instanzen bezeichnen wir als semi-zufällige Eingaben. Als Beispiel betrachten wir den Successive- Shortest-Path-Algorithmus für das Minimum-Cost-Flow-Problem. Während dieser Algorithmus imWorst Case exponentiell viele Schritte benötigt, um einen Minimum-Cost-Flow zu berechnen, zeigen wir, dass seine Laufzeit auf semi-zufälligen Eingaben polynomiell ist. Ein weiteres Problem, das wir in dieser Arbeit untersuchen, ist die Minimierung des Makespans für Scheduling auf unterschiedlich schnellen Maschinen. Es scheint, dass dieses Problem nicht effizient gelöst werden kann. Daher betrachten wir drei Approximationsalgorithmen: den Jump-, den Lex-Jump- und den List-Scheduling-Algorithmus. Im Worst Case hängt die Approximationsgüte dieser Algorithmen von der Anzahl der Maschinen ab. Wir zeigen, dass das auf semi-zufälligen Eingaben nicht der Fall ist. Des Weiteren betrachten wir ganzzahlige Optimierungsprobleme mit mehreren linearen Zielfunktionen, die simultan minimiert werden sollen. Wir leiten eine polynomielle obere Schranke für die Größe der Pareto-Menge auf semi-zufälligen Eingaben her, die im Gegensatz zu der exponentiellen unteren Worst-Case-Schranke steht. Mit den Erkenntnissen aus der Laufzeitanalyse des Successive-Shortest-Path-Algorithmus entwerfen wir einen randomisierten Algorithmus zur Bestimmung eines kurzen Pfades zwischen zwei gegebenen Ecken eines Polyeders. Wir betrachten dieses Ergebnis als ein Indiz dafür, dass in Zukunft Analysen auf semi-zufälligen Eingaben auch zu der Entwicklung schneller Algorithmen führen könnten

    Finding integer efficient solutions for bicriteria and tricriteria network flow problems using dinas

    No full text
    Computers and Operations Research252139-157CMOR
    corecore