87 research outputs found

    Finding branch-decompositions of matroids, hypergraphs, and more

    Full text link
    Given nn subspaces of a finite-dimensional vector space over a fixed finite field F\mathcal F, we wish to find a "branch-decomposition" of these subspaces of width at most kk, that is a subcubic tree TT with nn leaves mapped bijectively to the subspaces such that for every edge ee of TT, the sum of subspaces associated with leaves in one component of TeT-e and the sum of subspaces associated with leaves in the other component have the intersection of dimension at most kk. This problem includes the problems of computing branch-width of F\mathcal F-represented matroids, rank-width of graphs, branch-width of hypergraphs, and carving-width of graphs. We present a fixed-parameter algorithm to construct such a branch-decomposition of width at most kk, if it exists, for input subspaces of a finite-dimensional vector space over F\mathcal F. Our algorithm is analogous to the algorithm of Bodlaender and Kloks (1996) on tree-width of graphs. To extend their framework to branch-decompositions of vector spaces, we developed highly generic tools for branch-decompositions on vector spaces. The only known previous fixed-parameter algorithm for branch-width of F\mathcal F-represented matroids was due to Hlin\v{e}n\'y and Oum (2008) that runs in time O(n3)O(n^3) where nn is the number of elements of the input F\mathcal F-represented matroid. But their method is highly indirect. Their algorithm uses the non-trivial fact by Geelen et al. (2003) that the number of forbidden minors is finite and uses the algorithm of Hlin\v{e}n\'y (2005) on checking monadic second-order formulas on F\mathcal F-represented matroids of small branch-width. Our result does not depend on such a fact and is completely self-contained, and yet matches their asymptotic running time for each fixed kk.Comment: 73 pages, 10 figure

    Finding Branch-Decompositions of Matroids, Hypergraphs, and More

    Get PDF

    Integer programming models for the branchwidth problem

    Get PDF
    We consider the problem of computing the branchwidth and an optimal branch decomposition of a graph. Branch decompositions and branchwidth were introduced in 1991 by Robertson and Seymour and were used in the proof of Graph Minors Theorem (GMT), a well known conjecture (Wagner's conjecture) in graph theory. The notions of branchwidth and branch decompositions have been proved to be useful for solving many NP-hard problems that have applications in fields such as graph theory, network design, sensor networks and biology. Branch decompositions have been utilized for problems such as the traveling salesman problem by Cook and Seymour, general minor containment and the branchwidth problem by Hicks by means of the relevant branch decomposition-based algorithms. Branch decomposition-based algorithms are fixed parameter tractable algorithms obtained by combining dynamic programming techniques with branch decompositions. The running time and space of these algorithms strongly depend on the width of the utilized branch decomposition. Thus, finding optimal or close to optimal branch decompositions is very important for the efficiency of the branch decomposition-based algorithms. Motivated by the vastness of the fields of application, we aim to increase the efficiency of the branch decomposition-based algorithms by investigating effective techniques to find optimal branch decompositions. We present three integer programming models for the branchwidth problem. Two similar formulations are based on the relationship of branchwidth problem with a special case of the Steiner tree packing problem. The third formulation is based on the notion of laminar separations. We utilize upper and lower bounds obtained by heuristic algorithms, reduction techniques and cutting planes to increase the efficiency of our models. We use all three models for the branchwidth problem on hypergraphs as well. We compare the performance of three models both on graphs and hypergraphs. Furthermore we use the third model for rank-width problem and also offer a heuristic for finding good rank decompositions. We provide computational results for this problem, which can be a basis of comparison for future formulations

    Graph Theory

    Get PDF
    Graph theory is a rapidly developing area of mathematics. Recent years have seen the development of deep theories, and the increasing importance of methods from other parts of mathematics. The workshop on Graph Theory brought together together a broad range of researchers to discuss some of the major new developments. There were three central themes, each of which has seen striking recent progress: the structure of graphs with forbidden subgraphs; graph minor theory; and applications of the entropy compression method. The workshop featured major talks on current work in these areas, as well as presentations of recent breakthroughs and connections to other areas. There was a particularly exciting selection of longer talks, including presentations on the structure of graphs with forbidden induced subgraphs, embedding simply connected 2-complexes in 3-space, and an announcement of the solution of the well-known Oberwolfach Problem

    Approximating branchwidth on parametric extensions of planarity

    Full text link
    The \textsl{branchwidth} of a graph has been introduced by Roberson and Seymour as a measure of the tree-decomposability of a graph, alternative to treewidth. Branchwidth is polynomially computable on planar graphs by the celebrated ``Ratcatcher''-algorithm of Seymour and Thomas. We investigate an extension of this algorithm to minor-closed graph classes, further than planar graphs as follows: Let H0H_{0} be a graph embeddedable in the projective plane and H1H_{1} be a graph embeddedable in the torus. We prove that every {H0,H1}\{H_{0},H_{1}\}-minor free graph GG contains a subgraph GG' where the difference between the branchwidth of GG and the branchwidth of GG' is bounded by some constant, depending only on H0H_{0} and H1H_{1}. Moreover, the graph GG' admits a tree decomposition where all torsos are planar. This decomposition can be used for deriving an EPTAS for branchwidth: For {H0,H1}\{H_{0},H_{1}\}-minor free graphs, there is a function f ⁣:NNf\colon\mathbb{N}\to\mathbb{N} and a (1+ϵ)(1+\epsilon)-approximation algorithm for branchwidth, running in time O(n3+f(1ϵ)n),\mathcal{O}(n^3+f(\frac{1}{\epsilon})\cdot n), for every ϵ>0\epsilon>0
    corecore