524 research outputs found

    Unique Measure for Geometrical Shape Object Detection-based on Area Matching

    Get PDF
    Object classifier often operates by making decisions based on the values of several shape properties measured from an image of the object. The paper introduces a unique definition of measure for 2-D geometrical object shape detection. Using this definition different object shapes can be identified on the basis of their degree of fitness parameter. Basically, we have fitted a 2-D polygon/curve on the object as a best fitted polygon/curve and computed the parameter degree of fitness which is the ratio of the matching area and non-matching area due to the fitted polygon/curve and the object both. The results show the effectiveness of the proposed measure.Defence Science Journal, 2012, 62(1), pp.58-66, DOI:http://dx.doi.org/10.14429/dsj.62.94

    Self learning strategies for experimental design and response surface optimization

    Get PDF
    Most preset RSM designs offer ease of implementation and good performance over a wide range of process and design optimization applications. These designs often lack the ability to adapt the design based on the characteristics of application and experimental space so as to reduce the number of experiments necessary. Hence, they are not cost effective for applications where the cost of experimentation is high or when the experimentation resources are limited. In this dissertation, we present a number of self-learning strategies for optimization of different types of response surfaces for industrial experiments with noise, high experimentation cost, and requiring high design optimization performance. The proposed approach is a sequential adaptive experimentation approach which combines concepts from nonlinear optimization, non-parametric regression, statistical analysis, and response surface optimization. The proposed strategies uses the information gained from the previous experiments to design the subsequent experiment by simultaneously reducing the region of interest and identifying factor combinations for new experiments. Its major advantage is the experimentation efficiency such that, for a given response target, it identifies the input factor combination (or containing region) in less number of experiments than the classical designs. Through extensive simulated experiments and real-world case studies, we show that the proposed ASRSM method clearly outperforms the classical CCD and BBD methods, works superior to optimal A- D- and V- optimal designs on average and compares favorably with global optimizations methods including Gaussian Process and RBF

    Improved self-consistency for SCED-LCAO.

    Get PDF
    In this document I describe a novel implementation of the generalized bisection method for finding roots of highly non-linear functions of several variables. Several techniques were optimized to reduce computation time. The implementation of the bisection method allows for the calculation of heterogeneous systems with SCED-LCAO, since derivative-based methods often fail for these systems. Systems composed of Gallium and Nitrogen are currently receiving much interest due to their behavior as semi-conductors and their ability to form nano-wires. The methods developed here were employed to create a set of SCED-LCAO parameters for homogeneous Gallium and heterogeneous Gallium Nitride systems. These parameters were shown to provide SCED-LCAO with predictive power for future Gallium Nitride systems

    Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365

    Full text link
    We present a flexible and efficient method to construct triaxial dynamical models of galaxies with a central black hole, using Schwarzschild's orbital superposition approach. Our method is general and can deal with realistic luminosity distributions, which project to surface brightness distributions that may show position angle twists and ellipticity variations. The models are fit to measurements of the full line-of-sight velocity distribution (wherever available). We verify that our method is able to reproduce theoretical predictions of a three-integral triaxial Abel model. In a companion paper (van de Ven, de Zeeuw & van den Bosch), we demonstrate that the method recovers the phase-space distribution function. We apply our method to two-dimensional observations of the E3 galaxy NGC 4365, obtained with the integral-field spectrograph SAURON, and study its internal structure, showing that the observed kinematically decoupled core is not physically distinct from the main body and the inner region is close to oblate axisymmetric.Comment: 21 Pages, 14 (Colour) Figures, Companion paper is arXiv:0712.0309 Accepted to MNRAS. Full resolution version at http://www.strw.leidenuniv.nl/~bosch/papers/RvdBosch_triaxmethod.pd

    Electronic structure of bulk and low dimensional systems analyzed by Angle-Resolved Photoemission Spectroscopy

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Física de la Materia Condensada . Fecha de lectura: 15-09-200
    corecore