931 research outputs found

    Association Between PSCA Variants and Duodenal Ulcer Risk

    Get PDF
    Background: While duodenal ulcer (DU) and gastric cancer (GC) are both H. pylori infection-related diseases, individuals with DU are known to have lower risk for GC. Many epidemiological studies have identified the PSCA rs2294008 T-allele as a risk factor of GC, while others have found an association between the rs2294008 C-allele and risk of DU and gastric ulcer (GU). Following these initial reports, however, few studies have since validated these associations. Here, we aimed to validate the association between variations in PSCA and the risk of DU/GU and evaluate its interaction with environmental factors in a Japanese population. Methods: Six PSCA SNPs were genotyped in 584 DU cases, 925 GU cases, and 8,105 controls from the Japan Multi-Institutional Collaborative Cohort (J-MICC). Unconditional logistic regression models were applied to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between the SNPs and risk of DU/GU. Results: PSCA rs2294008 C-allele was associated with per allele OR of 1.34 (95% CI, 1.18–1.51; P = 2.28 × 10−6) for the risk of DU. This association was independent of age, sex, study site, smoking habit, drinking habit, and H. pylori status. On the other hand, we did not observe an association between the risk of GU and PSCA SNPs. Conclusions: Our study confirms an association between the PSCA rs2294008 C-allele and the risk of DU in a Japanese population

    Candidate gene-environment interactions in breast cancer.

    Get PDF
    Gene-environment interactions have the potential to shed light on biological processes leading to disease, identify individuals for whom risk factors are most relevant, and improve the accuracy of epidemiological risk models. We review the progress that has been made in investigating gene-environment interactions in the field of breast cancer. Although several large-scale analyses have been carried out, only a few significant interactions have been reported. One of these, an interaction between CASP8-rs1045485 and alcohol consumption has been replicated, but others have not, including LSP1- rs3817198 and parity, and 1p11.2-rs11249433 and ever being parous. False positive interactions may arise if the gene and environment are correlated and the causal variant is less frequent than the tag SNP. We conclude that while much progress has been made in this area it is still too soon to tell whether gene-environment interactions will fulfil their promise. Before we can make this assessment we will need to replicate (or refute) the reported interactions, identify the causal variants that underlie tag-SNP associations and validate the next generation of epidemiological risk models

    Do sex hormones confound or mediate the effect of chronotype on breast and prostate cancer? A Mendelian randomization study

    Get PDF
    Morning-preference chronotype has been found to be protective against breast and prostate cancer. Sex hormones have been implicated in relation to chronotype and the development of both cancers. This study aimed to assess whether sex hormones confound or mediate the effect of chronotype on breast and prostate cancer using a Mendelian Randomization (MR) framework. Genetic variants associated with chronotype and sex hormones (total testosterone, bioavailable testosterone, sex hormone binding globulin, and oestradiol) (p<5×10-8) were obtained from published genome-wide association studies (n≤244,207 females and n≤205,527 males). These variants were used to investigate causal relationships with breast (nCases/nControls = 133,384/113,789) and prostate (nCases/nControls = 79,148/61,106) cancer using univariable, bidirectional and multivariable MR. In females, we found evidence for: I) Reduced risk of breast cancer per category increase in morning-preference (OR = 0.93, 95% CI:0. 88, 1.00); II) Increased risk of breast cancer per SD increase in bioavailable testosterone (OR = 1.10, 95% CI: 1.01, 1.19) and total testosterone (OR = 1.15, 95% CI:1.07, 1.23); III) Bidirectional effects between morning-preference and both bioavailable and total testosterone (e.g. mean SD difference in bioavailable testosterone = -0.08, 95% CI:-0.12, -0.05 per category increase in morning-preference vs difference in morning-preference category = -0.04, 95% CI: -0.08, 0.00 per SD increase in bioavailable testosterone). In males, we found evidence for: I) Reduced risk of prostate cancer per category increase in morning-preference (OR = 0.90, 95% CI: 0.83, 0.97) and II) Increased risk of prostate cancer per SD increase in bioavailable testosterone (OR = 1.22, 95% CI: 1.08, 1.37). No bidirectional effects were found between morning-preference and testosterone in males. While testosterone levels were causally implicated with both chronotype and cancer, there was inconsistent evidence for testosterone as a mediator of the relationship. The protective effect of morning-preference on both breast and prostate cancer is clinically interesting, although it may be difficult to effectively modify chronotype. Further studies are needed to investigate other potentially modifiable intermediates

    Large-scale pharmacogenomic study of sulfonylureas and the QT, JT and QRS intervals: CHARGE Pharmacogenomics Working Group

    Get PDF
    Sulfonylureas, a commonly used class of medication used to treat type 2 diabetes, have been associated with an increased risk of cardiovascular disease. Their effects on QT interval duration and related electrocardiographic phenotypes are potential mechanisms for this adverse effect. In 11 ethnically diverse cohorts that included 71 857 European, African-American and Hispanic/Latino ancestry individuals with repeated measures of medication use and electrocardiogram (ECG) measurements, we conducted a pharmacogenomic genome-wide association study of sulfonylurea use and three ECG phenotypes: QT, JT and QRS intervals. In ancestry-specific meta-analyses, eight novel pharmacogenomic loci met the threshold for genome-wide significance (P&lt;5 × 10−8), and a pharmacokinetic variant in CYP2C9 (rs1057910) that has been associated with sulfonylurea-related treatment effects and other adverse drug reactions in previous studies was replicated. Additional research is needed to replicate the novel findings and to understand their biological basis

    Network-based methods for biological data integration in precision medicine

    Full text link
    [eng] The vast and continuously increasing volume of available biomedical data produced during the last decades opens new opportunities for large-scale modeling of disease biology, facilitating a more comprehensive and integrative understanding of its processes. Nevertheless, this type of modelling requires highly efficient computational systems capable of dealing with such levels of data volumes. Computational approximations commonly used in machine learning and data analysis, namely dimensionality reduction and network-based approaches, have been developed with the goal of effectively integrating biomedical data. Among these methods, network-based machine learning stands out due to its major advantage in terms of biomedical interpretability. These methodologies provide a highly intuitive framework for the integration and modelling of biological processes. This PhD thesis aims to explore the potential of integration of complementary available biomedical knowledge with patient-specific data to provide novel computational approaches to solve biomedical scenarios characterized by data scarcity. The primary focus is on studying how high-order graph analysis (i.e., community detection in multiplex and multilayer networks) may help elucidate the interplay of different types of data in contexts where statistical power is heavily impacted by small sample sizes, such as rare diseases and precision oncology. The central focus of this thesis is to illustrate how network biology, among the several data integration approaches with the potential to achieve this task, can play a pivotal role in addressing this challenge provided its advantages in molecular interpretability. Through its insights and methodologies, it introduces how network biology, and in particular, models based on multilayer networks, facilitates bringing the vision of precision medicine to these complex scenarios, providing a natural approach for the discovery of new biomedical relationships that overcomes the difficulties for the study of cohorts presenting limited sample sizes (data-scarce scenarios). Delving into the potential of current artificial intelligence (AI) and network biology applications to address data granularity issues in the precision medicine field, this PhD thesis presents pivotal research works, based on multilayer networks, for the analysis of two rare disease scenarios with specific data granularities, effectively overcoming the classical constraints hindering rare disease and precision oncology research. The first research article presents a personalized medicine study of the molecular determinants of severity in congenital myasthenic syndromes (CMS), a group of rare disorders of the neuromuscular junction (NMJ). The analysis of severity in rare diseases, despite its importance, is typically neglected due to data availability. In this study, modelling of biomedical knowledge via multilayer networks allowed understanding the functional implications of individual mutations in the cohort under study, as well as their relationships with the causal mutations of the disease and the different levels of severity observed. Moreover, the study presents experimental evidence of the role of a previously unsuspected gene in NMJ activity, validating the hypothetical role predicted using the newly introduced methodologies. The second research article focuses on the applicability of multilayer networks for gene priorization. Enhancing concepts for the analysis of different data granularities firstly introduced in the previous article, the presented research provides a methodology based on the persistency of network community structures in a range of modularity resolution, effectively providing a new framework for gene priorization for patient stratification. In summary, this PhD thesis presents major advances on the use of multilayer network-based approaches for the application of precision medicine to data-scarce scenarios, exploring the potential of integrating extensive available biomedical knowledge with patient-specific data

    Applying Mendelian randomization to appraise causality in relationships between nutrition and cancer

    Get PDF

    Genome-Wide Diet-Gene Interaction Analyses for Risk of Colorectal Cancer

    Get PDF
    Dietary factors, including meat, fruits, vegetables and fiber, are associated with colorectal cancer; however, there is limited information as to whether these dietary factors interact with genetic variants to modify risk of colorectal cancer. We tested interactions between these dietary factors and approximately 2.7 million genetic variants for colorectal cancer risk among 9,287 cases and 9,117 controls from ten studies. We used logistic regression to investigate multiplicative gene-diet interactions, as well as our recently developed Cocktail method that involves a screening step based on marginal associations and gene-diet correlations and a testing step for multiplicative interactions, while correcting for multiple testing using weighted hypothesis testing. Per quartile increment in the intake of red and processed meat were associated with statistically significant increased risks of colorectal cancer and vegetable, fruit and fiber intake with lower risks. From the case-control analysis, we detected a significant interaction between rs4143094 (10p14/near GATA3) and processed meat consumption (OR = 1.17; p = 8.7E-09), which was consistently observed across studies (p heterogeneity = 0.78). The risk of colorectal cancer associated with processed meat was increased among individuals with the rs4143094-TG and -TT genotypes (OR = 1.20 and OR = 1.39, respectively) and null among those with the GG genotype (OR = 1.03). Our results identify a novel gene-diet interaction with processed meat for colorectal cancer, highlighting that diet may modify the effect of genetic variants on disease risk, which may have important implications for prevention. © 2014
    • …
    corecore