9,502 research outputs found

    Finding and exploring memes in social media

    Full text link
    Critical literacy challenges us to question how what we read has been shaped by external context, especially when infor-mation comes from less established sources. While cross-checking multiple sources provides a foundation for critical literacy, trying to keep pace the constant deluge of new on-line information is a daunting proposition, especially for ca-sual readers. To help address this challenge, we propose a new form of technological assistance which automatically discovers and displays underlyingmemes: ideas embodied by similar phrases which are found in multiple sources. Once detected, these underlying memes are revealed to users via generated hypertext, allowing memes to be explored in con-text. Given the massive volume of online information today, we propose a highly-scalable system architecture based on MapReduce, extending work by Kolak and Schilit [11]. To validate our approach, we report on using our system to pro-cess and browse a 1.5 TB collection of crawled social media. Our contributions include a novel technological approach to support critical literacy and a highly-scalable system archi-tecture for meme discovery optimized for Hadoop [25]. Our source code and Meme Browser are both available online

    Predicting Successful Memes using Network and Community Structure

    Full text link
    We investigate the predictability of successful memes using their early spreading patterns in the underlying social networks. We propose and analyze a comprehensive set of features and develop an accurate model to predict future popularity of a meme given its early spreading patterns. Our paper provides the first comprehensive comparison of existing predictive frameworks. We categorize our features into three groups: influence of early adopters, community concentration, and characteristics of adoption time series. We find that features based on community structure are the most powerful predictors of future success. We also find that early popularity of a meme is not a good predictor of its future popularity, contrary to common belief. Our methods outperform other approaches, particularly in the task of detecting very popular or unpopular memes.Comment: 10 pages, 6 figures, 2 tables. Proceedings of 8th AAAI Intl. Conf. on Weblogs and social media (ICWSM 2014

    Clustering Memes in Social Media

    Full text link
    The increasing pervasiveness of social media creates new opportunities to study human social behavior, while challenging our capability to analyze their massive data streams. One of the emerging tasks is to distinguish between different kinds of activities, for example engineered misinformation campaigns versus spontaneous communication. Such detection problems require a formal definition of meme, or unit of information that can spread from person to person through the social network. Once a meme is identified, supervised learning methods can be applied to classify different types of communication. The appropriate granularity of a meme, however, is hardly captured from existing entities such as tags and keywords. Here we present a framework for the novel task of detecting memes by clustering messages from large streams of social data. We evaluate various similarity measures that leverage content, metadata, network features, and their combinations. We also explore the idea of pre-clustering on the basis of existing entities. A systematic evaluation is carried out using a manually curated dataset as ground truth. Our analysis shows that pre-clustering and a combination of heterogeneous features yield the best trade-off between number of clusters and their quality, demonstrating that a simple combination based on pairwise maximization of similarity is as effective as a non-trivial optimization of parameters. Our approach is fully automatic, unsupervised, and scalable for real-time detection of memes in streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'13), 201

    Detecting and Tracking the Spread of Astroturf Memes in Microblog Streams

    Full text link
    Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We introduce an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events. We describe a Web service that leverages this framework to track political memes in Twitter and help detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We present some cases of abusive behaviors uncovered by our service. Finally, we discuss promising preliminary results on the detection of suspicious memes via supervised learning based on features extracted from the topology of the diffusion networks, sentiment analysis, and crowdsourced annotations

    Investigating Rumor Propagation with TwitterTrails

    Get PDF
    Social media have become part of modern news reporting, used by journalists to spread information and find sources, or as a news source by individuals. The quest for prominence and recognition on social media sites like Twitter can sometimes eclipse accuracy and lead to the spread of false information. As a way to study and react to this trend, we introduce {\sc TwitterTrails}, an interactive, web-based tool ({\tt twittertrails.com}) that allows users to investigate the origin and propagation characteristics of a rumor and its refutation, if any, on Twitter. Visualizations of burst activity, propagation timeline, retweet and co-retweeted networks help its users trace the spread of a story. Within minutes {\sc TwitterTrails} will collect relevant tweets and automatically answer several important questions regarding a rumor: its originator, burst characteristics, propagators and main actors according to the audience. In addition, it will compute and report the rumor's level of visibility and, as an example of the power of crowdsourcing, the audience's skepticism towards it which correlates with the rumor's credibility. We envision {\sc TwitterTrails} as valuable tool for individual use, but we especially for amateur and professional journalists investigating recent and breaking stories. Further, its expanding collection of investigated rumors can be used to answer questions regarding the amount and success of misinformation on Twitter.Comment: 10 pages, 8 figures, under revie

    Inheritance patterns in citation networks reveal scientific memes

    Full text link
    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and we validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical Review
    corecore