579 research outputs found

    Erdos-Hajnal-type theorems in hypergraphs

    Get PDF
    The Erdos-Hajnal conjecture states that if a graph on n vertices is H-free, that is, it does not contain an induced copy of a given graph H, then it must contain either a clique or an independent set of size n^{d(H)}, where d(H) > 0 depends only on the graph H. Except for a few special cases, this conjecture remains wide open. However, it is known that a H-free graph must contain a complete or empty bipartite graph with parts of polynomial size. We prove an analogue of this result for 3-uniform hypergraphs, showing that if a 3-uniform hypergraph on n vertices is H-free, for any given H, then it must contain a complete or empty tripartite subgraph with parts of order c(log n)^{1/2 + d(H)}, where d(H) > 0 depends only on H. This improves on the bound of c(log n)^{1/2}, which holds in all 3-uniform hypergraphs, and, up to the value of the constant d(H), is best possible. We also prove that, for k > 3, no analogue of the standard Erdos-Hajnal conjecture can hold in k-uniform hypergraphs. That is, there are k-uniform hypergraphs H and sequences of H-free hypergraphs which do not contain cliques or independent sets of size appreciably larger than one would normally expect.Comment: 15 page

    Tur\'annical hypergraphs

    Full text link
    This paper is motivated by the question of how global and dense restriction sets in results from extremal combinatorics can be replaced by less global and sparser ones. The result we consider here as an example is Turan's theorem, which deals with graphs G=([n],E) such that no member of the restriction set consisting of all r-tuples on [n] induces a copy of K_r. Firstly, we examine what happens when this restriction set is replaced just by all r-tuples touching a given m-element set. That is, we determine the maximal number of edges in an n-vertex such that no K_r hits a given vertex set. Secondly, we consider sparse random restriction sets. An r-uniform hypergraph R on vertex set [n] is called Turannical (respectively epsilon-Turannical), if for any graph G on [n] with more edges than the Turan number ex(n,K_r) (respectively (1+\eps)ex(n,K_r), no hyperedge of R induces a copy of K_r in G. We determine the thresholds for random r-uniform hypergraphs to be Turannical and to epsilon-Turannical. Thirdly, we transfer this result to sparse random graphs, using techniques recently developed by Schacht [Extremal results for random discrete structures] to prove the Kohayakawa-Luczak-Rodl Conjecture on Turan's theorem in random graphs.Comment: 33 pages, minor improvements thanks to two referee

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    Positive independence densities of finite rank countable hypergraphs are achieved by finite hypergraphs

    Full text link
    The independence density of a finite hypergraph is the probability that a subset of vertices, chosen uniformly at random contains no hyperedges. Independence densities can be generalized to countable hypergraphs using limits. We show that, in fact, every positive independence density of a countably infinite hypergraph with hyperedges of bounded size is equal to the independence density of some finite hypergraph whose hyperedges are no larger than those in the infinite hypergraph. This answers a question of Bonato, Brown, Kemkes, and Pra{\l}at about independence densities of graphs. Furthermore, we show that for any kk, the set of independence densities of hypergraphs with hyperedges of size at most kk is closed and contains no infinite increasing sequences.Comment: To appear in the European Journal of Combinatorics, 12 page

    Degrees in oriented hypergraphs and sparse Ramsey theory

    Full text link
    Let GG be an rr-uniform hypergraph. When is it possible to orient the edges of GG in such a way that every pp-set of vertices has some pp-degree equal to 00? (The pp-degrees generalise for sets of vertices what in-degree and out-degree are for single vertices in directed graphs.) Caro and Hansberg asked if the obvious Hall-type necessary condition is also sufficient. Our main aim is to show that this is true for rr large (for given pp), but false in general. Our counterexample is based on a new technique in sparse Ramsey theory that may be of independent interest.Comment: 20 pages, 3 figure

    Some extremal problems for hereditary properties of graphs

    Full text link
    This note answers extremal questions like: what is the maximum number of edges in a graph of order n, which belongs to some hereditary property. The same question is answered also for the spectral radius and other similar parameters
    • …
    corecore