589 research outputs found

    A Parametric Simplex Algorithm for Linear Vector Optimization Problems

    Get PDF
    In this paper, a parametric simplex algorithm for solving linear vector optimization problems (LVOPs) is presented. This algorithm can be seen as a variant of the multi-objective simplex (Evans-Steuer) algorithm [12]. Different from it, the proposed algorithm works in the parameter space and does not aim to find the set of all efficient solutions. Instead, it finds a solution in the sense of Loehne [16], that is, it finds a subset of efficient solutions that allows to generate the whole frontier. In that sense, it can also be seen as a generalization of the parametric self-dual simplex algorithm, which originally is designed for solving single objective linear optimization problems, and is modified to solve two objective bounded LVOPs with the positive orthant as the ordering cone in Ruszczynski and Vanderbei [21]. The algorithm proposed here works for any dimension, any solid pointed polyhedral ordering cone C and for bounded as well as unbounded problems. Numerical results are provided to compare the proposed algorithm with an objective space based LVOP algorithm (Benson algorithm in [13]), that also provides a solution in the sense of [16], and with Evans-Steuer algorithm [12]. The results show that for non-degenerate problems the proposed algorithm outperforms Benson algorithm and is on par with Evan-Steuer algorithm. For highly degenerate problems Benson's algorithm [13] excels the simplex-type algorithms; however, the parametric simplex algorithm is for these problems computationally much more efficient than Evans-Steuer algorithm.Comment: 27 pages, 4 figures, 5 table

    Singular Continuation: Generating Piece-wise Linear Approximations to Pareto Sets via Global Analysis

    Full text link
    We propose a strategy for approximating Pareto optimal sets based on the global analysis framework proposed by Smale (Dynamical systems, New York, 1973, pp. 531-544). The method highlights and exploits the underlying manifold structure of the Pareto sets, approximating Pareto optima by means of simplicial complexes. The method distinguishes the hierarchy between singular set, Pareto critical set and stable Pareto critical set, and can handle the problem of superposition of local Pareto fronts, occurring in the general nonconvex case. Furthermore, a quadratic convergence result in a suitable set-wise sense is proven and tested in a number of numerical examples.Comment: 29 pages, 12 figure

    A semidefinite programming approach for solving multiobjective linear programming

    Get PDF
    Several algorithms are available in the literature for finding the entire set of Pareto-optimal solutions in MultiObjective Linear Programming (MOLP). However, it has not been proposed so far an interior point algorithm that finds all Pareto-optimal solutions of MOLP. We present an explicit construction, based on a transformation of any MOLP into a finite sequence of SemiDefinite Programs (SDP), the solutions of which give the entire set of Pareto-optimal extreme points solutions of MOLP. These SDP problems are solved by interior point methods; thus our approach provides a pseudopolynomial interior point methodology to find the set of Pareto-optimal solutions of MOLP.Junta de AndalucíaFondo Europeo de Desarrollo RegionalMinisterio de Ciencia e Innovació
    corecore