494 research outputs found

    The world of hereditary graph classes viewed through Truemper configurations

    Get PDF
    In 1982 Truemper gave a theorem that characterizes graphs whose edges can be labeled so that all chordless cycles have prescribed parities. The characterization states that this can be done for a graph G if and only if it can be done for all induced subgraphs of G that are of few speci c types, that we will call Truemper con gurations. Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite graphs that are signable to be balanced (i.e. bipartite graphs whose node-node incidence matrices are balanceable matrices). The con gurations that Truemper identi ed in his theorem ended up playing a key role in understanding the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable matrices and perfect graphs. In this survey we view all these classes, and more, through the excluded Truemper con gurations, focusing on the algorithmic consequences, trying to understand what structurally enables e cient recognition and optimization algorithms

    Exploiting structure to cope with NP-hard graph problems: Polynomial and exponential time exact algorithms

    Get PDF
    An ideal algorithm for solving a particular problem always finds an optimal solution, finds such a solution for every possible instance, and finds it in polynomial time. When dealing with NP-hard problems, algorithms can only be expected to possess at most two out of these three desirable properties. All algorithms presented in this thesis are exact algorithms, which means that they always find an optimal solution. Demanding the solution to be optimal means that other concessions have to be made when designing an exact algorithm for an NP-hard problem: we either have to impose restrictions on the instances of the problem in order to achieve a polynomial time complexity, or we have to abandon the requirement that the worst-case running time has to be polynomial. In some cases, when the problem under consideration remains NP-hard on restricted input, we are even forced to do both. Most of the problems studied in this thesis deal with partitioning the vertex set of a given graph. In the other problems the task is to find certain types of paths and cycles in graphs. The problems all have in common that they are NP-hard on general graphs. We present several polynomial time algorithms for solving restrictions of these problems to specific graph classes, in particular graphs without long induced paths, chordal graphs and claw-free graphs. For problems that remain NP-hard even on restricted input we present exact exponential time algorithms. In the design of each of our algorithms, structural graph properties have been heavily exploited. Apart from using existing structural results, we prove new structural properties of certain types of graphs in order to obtain our algorithmic results

    Hybrid tractability of soft constraint problems

    Get PDF
    The constraint satisfaction problem (CSP) is a central generic problem in computer science and artificial intelligence: it provides a common framework for many theoretical problems as well as for many real-life applications. Soft constraint problems are a generalisation of the CSP which allow the user to model optimisation problems. Considerable effort has been made in identifying properties which ensure tractability in such problems. In this work, we initiate the study of hybrid tractability of soft constraint problems; that is, properties which guarantee tractability of the given soft constraint problem, but which do not depend only on the underlying structure of the instance (such as being tree-structured) or only on the types of soft constraints in the instance (such as submodularity). We present several novel hybrid classes of soft constraint problems, which include a machine scheduling problem, constraint problems of arbitrary arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary soft constraints. An important tool in our investigation will be the notion of forbidden substructures.Comment: A full version of a CP'10 paper, 26 page

    Graph Theory

    Get PDF
    Highlights of this workshop on structural graph theory included new developments on graph and matroid minors, continuous structures arising as limits of finite graphs, and new approaches to higher graph connectivity via tree structures

    Clique-Stable Set separation in perfect graphs with no balanced skew-partitions

    Get PDF
    Inspired by a question of Yannakakis on the Vertex Packing polytope of perfect graphs, we study the Clique-Stable Set Separation in a non-hereditary subclass of perfect graphs. A cut (B,W) of G (a bipartition of V(G)) separates a clique K and a stable set S if KBK\subseteq B and SWS\subseteq W. A Clique-Stable Set Separator is a family of cuts such that for every clique K, and for every stable set S disjoint from K, there exists a cut in the family that separates K and S. Given a class of graphs, the question is to know whether every graph of the class admits a Clique-Stable Set Separator containing only polynomially many cuts. It is open for the class of all graphs, and also for perfect graphs, which was Yannakakis' original question. Here we investigate on perfect graphs with no balanced skew-partition; the balanced skew-partition was introduced in the proof of the Strong Perfect Graph Theorem. Recently, Chudnovsky, Trotignon, Trunck and Vuskovic proved that forbidding this unfriendly decomposition permits to recursively decompose Berge graphs using 2-join and complement 2-join until reaching a basic graph, and they found an efficient combinatorial algorithm to color those graphs. We apply their decomposition result to prove that perfect graphs with no balanced skew-partition admit a quadratic-size Clique-Stable Set Separator, by taking advantage of the good behavior of 2-join with respect to this property. We then generalize this result and prove that the Strong Erdos-Hajnal property holds in this class, which means that every such graph has a linear-size biclique or complement biclique. This property does not hold for all perfect graphs (Fox 2006), and moreover when the Strong Erdos-Hajnal property holds in a hereditary class of graphs, then both the Erdos-Hajnal property and the polynomial Clique-Stable Set Separation hold.Comment: arXiv admin note: text overlap with arXiv:1308.644
    corecore