4,730 research outputs found

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Content-based Video Retrieval by Integrating Spatio-Temporal and Stochastic Recognition of Events

    Get PDF
    As amounts of publicly available video data grow the need to query this data efficiently becomes significant. Consequently content-based retrieval of video data turns out to be a challenging and important problem. We address the specific aspect of inferring semantics automatically from raw video data. In particular, we introduce a new video data model that supports the integrated use of two different approaches for mapping low-level features to high-level concepts. Firstly, the model is extended with a rule-based approach that supports spatio-temporal formalization of high-level concepts, and then with a stochastic approach. Furthermore, results on real tennis video data are presented, demonstrating the validity of both approaches, as well us advantages of their integrated us

    The Digital Earth Observation Librarian: A Data Mining Approach for Large Satellite Images Archives

    Get PDF
    Throughout the years, various Earth Observation (EO) satellites have generated huge amounts of data. The extraction of latent information in the data repositories is not a trivial task. New methodologies and tools, being capable of handling the size, complexity and variety of data, are required. Data scientists require support for the data manipulation, labeling and information extraction processes. This paper presents our Earth Observation Image Librarian (EOLib), a modular software framework which offers innovative image data mining capabilities for TerraSAR-X and EO image data, in general. The main goal of EOLib is to reduce the time needed to bring information to end-users from Payload Ground Segments (PGS). EOLib is composed of several modules which offer functionalities such as data ingestion, feature extraction from SAR (Synthetic Aperture Radar) data, meta-data extraction, semantic definition of the image content through machine learning and data mining methods, advanced querying of the image archives based on content, meta-data and semantic categories, as well as 3-D visualization of the processed images. EOLib is operated by DLR’s (German Aerospace Center’s) Multi-Mission Payload Ground Segment of its Remote Sensing Data Center at Oberpfaffenhofen, Germany

    An evaluation of semantic fisheye views for opportunistic search in an annotated image collection

    Get PDF
    Visual interfaces are potentially powerful tools for users to explore a representation of a collection and opportunistically discover information that will guide them toward relevant documents. Semantic fisheye views (SFEVs) are focus + context visualization techniques that manage visual complexity by selectively emphasizing and increasing the detail of information related to the user's focus and deemphasizing or filtering less important information. In this paper we describe a prototype for visualizing an annotated image collection and an experiment to compare the effectiveness of two distinctly different SFEVs for a complex opportunistic search task. The first SFEV calculates relevance based on keyword-content similarity and the second based on conceptual relationships between images derived using WordNet. The results of the experiment suggest that semantic-guided search is significantly more effective than similarity-guided search for discovering and using domain knowledge in a collectio

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning
    • …
    corecore