5,301 research outputs found

    Reconstructing a Simple Polytope from its Graph

    Full text link
    Blind and Mani (1987) proved that the entire combinatorial structure (the vertex-facet incidences) of a simple convex polytope is determined by its abstract graph. Their proof is not constructive. Kalai (1988) found a short, elegant, and algorithmic proof of that result. However, his algorithm has always exponential running time. We show that the problem to reconstruct the vertex-facet incidences of a simple polytope P from its graph can be formulated as a combinatorial optimization problem that is strongly dual to the problem of finding an abstract objective function on P (i.e., a shelling order of the facets of the dual polytope of P). Thereby, we derive polynomial certificates for both the vertex-facet incidences as well as for the abstract objective functions in terms of the graph of P. The paper is a variation on joint work with Michael Joswig and Friederike Koerner (2001).Comment: 14 page

    The Complexity of Finding Small Triangulations of Convex 3-Polytopes

    Full text link
    The problem of finding a triangulation of a convex three-dimensional polytope with few tetrahedra is proved to be NP-hard. We discuss other related complexity results.Comment: 37 pages. An earlier version containing the sketch of the proof appeared at the proceedings of SODA 200

    Monotone Projection Lower Bounds from Extended Formulation Lower Bounds

    Get PDF
    In this short note, we reduce lower bounds on monotone projections of polynomials to lower bounds on extended formulations of polytopes. Applying our reduction to the seminal extended formulation lower bounds of Fiorini, Massar, Pokutta, Tiwari, & de Wolf (STOC 2012; J. ACM, 2015) and Rothvoss (STOC 2014; J. ACM, 2017), we obtain the following interesting consequences. 1. The Hamiltonian Cycle polynomial is not a monotone subexponential-size projection of the permanent; this both rules out a natural attempt at a monotone lower bound on the Boolean permanent, and shows that the permanent is not complete for non-negative polynomials in VNPR_{{\mathbb R}} under monotone p-projections. 2. The cut polynomials and the perfect matching polynomial (or "unsigned Pfaffian") are not monotone p-projections of the permanent. The latter, over the Boolean and-or semi-ring, rules out monotone reductions in one of the natural approaches to reducing perfect matchings in general graphs to perfect matchings in bipartite graphs. As the permanent is universal for monotone formulas, these results also imply exponential lower bounds on the monotone formula size and monotone circuit size of these polynomials.Comment: Published in Theory of Computing, Volume 13 (2017), Article 18; Received: November 10, 2015, Revised: July 27, 2016, Published: December 22, 201
    • …
    corecore