29 research outputs found

    A Survey of Probabilistic Timing Analysis Techniques for Real-Time Systems

    Get PDF
    This survey covers probabilistic timing analysis techniques for real-time systems. It reviews and critiques the key results in the field from its origins in 2000 to the latest research published up to the end of August 2018. The survey provides a taxonomy of the different methods used, and a classification of existing research. A detailed review is provided covering the main subject areas: static probabilistic timing analysis, measurement-based probabilistic timing analysis, and hybrid methods. In addition, research on supporting mechanisms and techniques, case studies, and evaluations is also reviewed. The survey concludes by identifying open issues, key challenges and possible directions for future research

    Correlative Framework of Techniques for the Inspection, Evaluation, and Design of Micro-electronic Devices

    Get PDF
    Trillions of micro- and nano-electronic devices are manufactured every year. They service countless electronic systems across a diverse range of applications ranging from civilian, military, and medical sectors. Examples of these devices include: packaged and board-mounted semiconductor devices such as ceramic capacitors, CPUs, GPUs, DSPs, etc., biomedical implantable electrochemical devices such as pacemakers, defibrillators, and neural stimulators, electromechanical sensors such as MEMS/NEMS accelerometers and positioning systems and many others. Though a diverse collection of devices, they are unified by their length scale. Particularly, with respect to the ever-present objectives of device miniaturization and performance improvement. Pressures to meet these objectives have left significant room for the development of widely applicable inspection and evaluation techniques to accurately and reliably probe new and failed devices on an ever-shrinking length scale. Presented in this study is a framework of correlative, cross-modality microscopy workflows coupled with novel in-situ experimentation and testing, and computational reverse engineering and modeling methods, aimed at addressing the current and future challenges of evaluating micro- and nano-electronic devices. The current challenges are presented through a unique series of micro- and nano-electronic devices from a wide range of applications with ties to industrial relevance. Solutions were reached for the challenges and through the development of these workflows, they were successfully expanded to areas outside the immediate area of the original project. Limitations on techniques and capabilities were noted to contextualize the applicability of these workflows to other current and future challenges

    Reassessing re-presentation: a quest to provide a multisensorial experience to render the natural landscape

    Get PDF
    The principal aim of this research was to determine if a multi-sensorial representation of natural landscapes could provide me, the artist, with a deeper perception of place. Six different geographical sites on Magnetic Island in North Queensland were selected to provide a variety of landscapes. If any conclusions were to be drawn about perception of landscape, then those conclusions should draw on data from different sites in order to assess if there are common factors involved in perception. The sites varied from seashore, to mangroves, to high rocky places, and stimulated different physical and internal responses

    A Survey of Probabilistic Schedulability Analysis Techniques for Real-Time Systems

    Get PDF
    This survey covers schedulability analysis techniques for probabilistic real-time systems. It reviews the key results in the field from its origins in the late 1980s to the latest research published up to the end of August 2018. The survey outlines fundamental concepts and highlights key issues. It provides a taxonomy of the different methods used, and a classification of existing research. A detailed review is provided covering the main subject areas as well as research on supporting techniques. The survey concludes by identifying open issues, key challenges and possible directions for future research

    A three-dimensional approach to in vitro culture of immune-related cells

    Get PDF

    NASA Tech Briefs, June 1995

    Get PDF
    Topics include: communications technology, electronic components and circuits, electronic systems, physical sciences, materials, computer programs, mechanics, machinery, manufacturing/fabrication, mathematics and information sciences, life sciences, books and reports, a special section of laser Tech Briefs

    Play Among Books

    Get PDF
    How does coding change the way we think about architecture? Miro Roman and his AI Alice_ch3n81 develop a playful scenario in which they propose coding as the new literacy of information. They convey knowledge in the form of a project model that links the fields of architecture and information through two interwoven narrative strands in an “infinite flow” of real books

    Cyber Law and Espionage Law as Communicating Vessels

    Get PDF
    Professor Lubin\u27s contribution is Cyber Law and Espionage Law as Communicating Vessels, pp. 203-225. Existing legal literature would have us assume that espionage operations and “below-the-threshold” cyber operations are doctrinally distinct. Whereas one is subject to the scant, amorphous, and under-developed legal framework of espionage law, the other is subject to an emerging, ever-evolving body of legal rules, known cumulatively as cyber law. This dichotomy, however, is erroneous and misleading. In practice, espionage and cyber law function as communicating vessels, and so are better conceived as two elements of a complex system, Information Warfare (IW). This paper therefore first draws attention to the similarities between the practices – the fact that the actors, technologies, and targets are interchangeable, as are the knee-jerk legal reactions of the international community. In light of the convergence between peacetime Low-Intensity Cyber Operations (LICOs) and peacetime Espionage Operations (EOs) the two should be subjected to a single regulatory framework, one which recognizes the role intelligence plays in our public world order and which adopts a contextual and consequential method of inquiry. The paper proceeds in the following order: Part 2 provides a descriptive account of the unique symbiotic relationship between espionage and cyber law, and further explains the reasons for this dynamic. Part 3 places the discussion surrounding this relationship within the broader discourse on IW, making the claim that the convergence between EOs and LICOs, as described in Part 2, could further be explained by an even larger convergence across all the various elements of the informational environment. Parts 2 and 3 then serve as the backdrop for Part 4, which details the attempt of the drafters of the Tallinn Manual 2.0 to compartmentalize espionage law and cyber law, and the deficits of their approach. The paper concludes by proposing an alternative holistic understanding of espionage law, grounded in general principles of law, which is more practically transferable to the cyber realmhttps://www.repository.law.indiana.edu/facbooks/1220/thumbnail.jp

    Advances in Superconducting Circuit Quantum Electrodynamics

    Get PDF
    The topics of this thesis are based on circuit quantum electrodynamics (cQED), a theoretical and experimental platform allowing the study of light--matter interaction. This platform is rich both in observable physical phenomena and future practical applications. A "circuit" in cQED may comprise various elements, with the two main types being electromagnetic quantum harmonic oscillators, or resonators, and superconducting Josephson quantum bits, qubits. Because of the relative ease to fabricate and control quantum circuits—especially when compared to the more traditional cavity quantum electrodynamics—cQED has quickly grown in popularity in research labs across the world and is regarded as one of the major contenders for quantum computing. The advances referred to in the title of this thesis address three significant challenges to practical applications of cQED; they are relevant not only to quantum computing, but also to other applications, such as simulations of physical systems. The first advance is related to control scalability. Practical applications require large circuits, and the current approaches used to send control signals to those circuits will not scale indefinitely. A solution to this challenge, the quantum socket, is presented and evaluated in depth. The second advance concerns calibration. Any application of cQED requires knowing the precise parameters defining the interactions between the various components of a circuit. Two cutting edge methods for the calibration of interaction parameters are explained and benchmarked; they show a remarkable improvement over existing, inefficient, methods. The third advance involves the physics of dielectric defects in the samples on which circuits are fabricated. These unwanted defects are modeled as two-level systems (TLS) that interact with circuit elements such as qubits. Experimental measurements and novel simulations conclusively demonstrate that interactions between TLS are responsible for the stochastic relaxation-time fluctuations observed in superconducting qubits

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions
    corecore