186 research outputs found

    Eigenvector Synchronization, Graph Rigidity and the Molecule Problem

    Full text link
    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend on previous work and propose the 3D-ASAP algorithm, for the graph realization problem in R3\mathbb{R}^3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch there corresponds an element of the Euclidean group Euc(3) of rigid transformations in R3\mathbb{R}^3, and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-SP-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a preprocessing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably to similar state-of-the art localization algorithms.Comment: 49 pages, 8 figure

    Results on geometric networks and data structures

    Get PDF
    This thesis discusses four problems in computational geometry. In traditional colored range-searching problems, one wants to store a set of n objects with m distinct colors for the following queries: report all colors such that there is at least one object of that color intersecting the query range. Such an object, however, could be an `outlier' in its color class. We consider a variant of this problem where one has to report only those colors such that at least a fraction t of the objects of that color intersects the query range, for some parameter t. Our main results are on an approximate version of this problem, where we are also allowed to report those colors for which a fraction (1-epsilon)t intersects the query range, for some fixed epsilon > 0. We present efficient data structures for such queries with orthogonal query ranges in sets of colored points, and for point stabbing queries in sets of colored rectangles. A box-tree is a bounding-volume hierarchy that uses axis-aligned boxes as bounding volumes. R-trees are box-trees with nodes of high degree. The query complexity of a box-tree with respect to a given type of query is the maximum number of nodes visited when answering such a query. We describe several new algorithms for constructing box-trees with small worst-case query complexity with respect to queries with axis-parallel boxes and with points. We also prove lower bounds on the worst-case query complexity for box-trees, which show that our results are optimal or close to optimal. The geometric minimum-diameter spanning tree (MDST) of a set of n points is a tree that spans the set and minimizes the Euclidian length of the longest path in the tree. So far, the MDST can only be found in slightly subcubic time. We give two fast approximation schemes for the MDST, i.e. factor-(1+epsilon) approximation algorithms. One algorithm uses a grid and takes time O*(1/epsilon^(5 2/3) + n), where the O*-notation hides terms of type O(log^O(1) 1/epsilon). The other uses the well-separated pair decomposition and takes O(1/epsilon^3 n + (1/epsilon) n log n) time. A combination of the two approaches runs in O*(1/epsilon^5 + n) time. The dilation of a geometric graph is the maximum, over all pairs of points in the graph, of the ratio of the Euclidean length of the shortest path between them in the graph and their Euclidean distance. We consider a generalized version of this notion, where the nodes of the graph are not points but axis-parallel rectangles in the plane. The arcs in the graph are horizontal or vertical segments connecting a pair of rectangles, and the distance measure we use is the L1-distance. We study the following problem: given n non-intersecting rectangles and a graph describing which pairs of rectangles are to be connected, we wish to place the connecting segments such that the dilation is minimized. We obtain the following results: for arbitrary graphs, the problem is NP-hard; for trees, we can solve the problem by linear programming on O(n^2) variables and constraints; for paths, we can solve the problem in time O(n^3 log n); for rectangles sorted vertically along a path, the problem can be solved in O(n^2) time

    Spin Ice, Fractionalization and Topological Order

    Full text link
    The spin ice compounds {\dys} and {\holm} are highly unusual magnets which epitomize a set of concepts of great interest in modern condensed matter physics: their low-energy physics exhibits an emergent gauge field and their excitations are magnetic monopoles which arise from the fractionalization of the microscopic magnetic spin degrees of freedom. In this review, we provide an elementary introduction to these concepts and we survey the thermodynamics, statics and dynamics---in and out of equilibrium---of spin ice from these vantage points. Along the way, we touch on topics such as emergent Coulomb plasmas, observable "Dirac strings", and irrational charges. We close with the outlook for these unique materials.Comment: (15 pages, 9 figures) see http://www.annualreviews.org/doi/abs/10.1146/annurev-conmatphys-020911-125058 for the published versio

    Rational Design of Small-Molecule Inhibitors of Protein-Protein Interactions: Application to the Oncogenic c-Myc/Max Interaction

    Get PDF
    Protein-protein interactions (PPIs) constitute an emerging class of targets for pharmaceutical intervention pursued by both industry and academia. Despite their fundamental role in many biological processes and diseases such as cancer, PPIs are still largely underrepresented in today's drug discovery. This dissertation describes novel computational approaches developed to facilitate the discovery/design of small-molecule inhibitors of PPIs, using the oncogenic c-Myc/Max interaction as a case study.First, we critically review current approaches and limitations to the discovery of small-molecule inhibitors of PPIs and we provide examples from the literature.Second, we examine the role of protein flexibility in molecular recognition and binding, and we review recent advances in the application of Elastic Network Models (ENMs) to modeling the global conformational changes of proteins observed upon ligand binding. The agreement between predicted soft modes of motions and structural changes experimentally observed upon ligand binding supports the view that ligand binding is facilitated, if not enabled, by the intrinsic (pre-existing) motions thermally accessible to the protein in the unliganded form.Third, we develop a new method for generating models of the bioactive conformations of molecules in the absence of protein structure, by identifying a set of conformations (from different molecules) that are most mutually similar in terms of both their shape and chemical features. We show how to solve the problem using an Integer Linear Programming formulation of the maximum-edge weight clique problem. In addition, we present the application of the method to known c-Myc/Max inhibitors.Fourth, we propose an innovative methodology for molecular mimicry design. We show how the structure of the c-Myc/Max complex was exploited to designing compounds that mimic the binding interactions that Max makes with the leucine zipper domain of c-Myc.In summary, the approaches described in this dissertation constitute important contributions to the fields of computational biology and computer-aided drug discovery, which combine biophysical insights and computational methods to expedite the discovery of novel inhibitors of PPIs

    Entwicklung einer Kontimuumselektrostatik Methode für Molekulardynamik Simulationen

    Get PDF
    corecore