288 research outputs found

    Even faster elastic-degenerate string matching via fast matrix multiplication

    Get PDF
    An elastic-degenerate (ED) string is a sequence of n sets of strings of total length N, which was recently proposed to model a set of similar sequences. The ED string matching (EDSM) problem is to find all occurrences of a pattern of length m in an ED text. The EDSM problem has recently received some attention in the combinatorial pattern matching community, and an O(nm1.5 √(log m) + N)-time algorithm is known [Aoyama et al., CPM 2018]. The standard assumption in the prior work on this question is that N is substantially larger than both n and m, and thus we would like to have a linear dependency on the former. Under this assumption, the natural open problem is whether we can decrease the 1.5 exponent in the time complexity, similarly as in the related (but, to the best of our knowledge, not equivalent) word break problem [Backurs and Indyk, FOCS 2016].Our starting point is a conditional lower bound for the EDSM problem. We use the popular combinatorial Boolean matrix multiplication (BMM) conjecture stating that there is no truly subcubic combinatorial algorithm for BMM [Abboud and Williams, FOCS 2014]. By designing an appropriate reduction we show that a combinatorial algorithm solving the EDSM problem in O(nm1.5−∊ + N) time, for any ∊ > 0, refutes this conjecture. Of course, the notion of combinatorial algorithms is not clearly defined, so our reduction should be understood as an indication that decreasing the exponent requires fast matrix multiplication.Two standard tools used in algorithms on strings are string periodicity and fast Fourier transform. Our main technical contribution is that we successfully combine these tools with fast matrix multiplication to design a non-combinatorial O(nm1.381 + N)-time algorithm for EDSM. To the best of our knowledge, we are the first to do so.</p

    Book of Abstracts of the Sixth SIAM Workshop on Combinatorial Scientific Computing

    Get PDF
    Book of Abstracts of CSC14 edited by Bora UçarInternational audienceThe Sixth SIAM Workshop on Combinatorial Scientific Computing, CSC14, was organized at the Ecole Normale Supérieure de Lyon, France on 21st to 23rd July, 2014. This two and a half day event marked the sixth in a series that started ten years ago in San Francisco, USA. The CSC14 Workshop's focus was on combinatorial mathematics and algorithms in high performance computing, broadly interpreted. The workshop featured three invited talks, 27 contributed talks and eight poster presentations. All three invited talks were focused on two interesting fields of research specifically: randomized algorithms for numerical linear algebra and network analysis. The contributed talks and the posters targeted modeling, analysis, bisection, clustering, and partitioning of graphs, applied in the context of networks, sparse matrix factorizations, iterative solvers, fast multi-pole methods, automatic differentiation, high-performance computing, and linear programming. The workshop was held at the premises of the LIP laboratory of ENS Lyon and was generously supported by the LABEX MILYON (ANR-10-LABX-0070, Université de Lyon, within the program ''Investissements d'Avenir'' ANR-11-IDEX-0007 operated by the French National Research Agency), and by SIAM

    Finding a heaviest vertex-weighted triangle is not harder than matrix multiplication

    Get PDF
    We show that a maximum-weight triangle in an undirected graph with n vertices and real weights assigned to vertices can be found in time O(n(omega) + n(2+o(1))), where omega is the exponent of the fastest matrix multiplication algorithm. By the currently best bound on omega, the running time of our algorithm is O(n(2.376)). Our algorithm substantially improves the previous time-bounds for this problem, and its asymptotic time complexity matches that of the fastest known algorithm for finding any triangle (not necessarily a maximum-weight one) in a graph. We can extend our algorithm to improve the upper bounds on finding a maximum-weight triangle in a sparse graph and on finding a maximum-weight subgraph isomorphic to a fixed graph. We can find a maximum-weight triangle in a vertex-weighted graph with m edges in asymptotic time required by the fastest algorithm for finding any triangle in a graph with m edges, i.e., in time O(m(1.41)). Our algorithms for a maximum-weight fixed subgraph (in particular any clique of constant size) are asymptotically as fast as the fastest known algorithms for a fixed subgraph

    Finding a heaviest triangle is not harder than matrix multiplication

    No full text
    We show that for any epsilon > 0, a maximum-weight triangle in an undirected graph with rt vertices and real weights assigned to vertices can be found in time O(n(omega) + n(2+epsilon)), where omega is the exponent of fastest matrix multiplication algorithm. By the currently best bound on omega, the running time of our algorithm is O(n(2.376)). Our algorithm substantially improves the previous time-bounds for this problem recently established by Vassilevska et al. (STOC 2006, O(n(2.688))) and (ICALP 2006, O(n(2.575))). Its asymptotic time complexity matches that of the fastest known algorithm for finding a triangle (not necessarily a maximum-weight one) in a graph. By applying or extending our algorithm, we can also improve the upper bounds on finding a maximum-weight triangle in a sparse graph and on finding a maximum-weight subgraph isomorphic to a fixed graph established in the papers by Vassilevska et al. For example, we can find a maximum-weight triangle in a vertexweighted graph with m edges in asymptotic time required by the fastest algorithm for finding any triangle in a graph with in edges, i.e., in time O(m(1.41))

    Educating Middle School Students Through the Implementation of Near Earth Aerial Tracking

    Get PDF
    This project describes the importance of Near Earth Aerial Tracking as an educative tool, and how its use may broaden students\u27 interest in their local environment. The goal of this project was to use Near Earth Aerial Tracking to encourage students and professionals to collect data regarding the vegetative health of plant life in their communities. In order to achieve this goal, we achieved three objectives; we analyzed already existing programs, optimized our equipment and program, and designed an integrated curriculum for students. Two kits were designed as a result of this project. These kits help encourage the reinforcement of mathematics, science, engineering and technology
    • 

    corecore