8,463 research outputs found

    A Neural Model of How the Brain Computes Heading from Optic Flow in Realistic Scenes

    Full text link
    Animals avoid obstacles and approach goals in novel cluttered environments using visual information, notably optic flow, to compute heading, or direction of travel, with respect to objects in the environment. We present a neural model of how heading is computed that describes interactions among neurons in several visual areas of the primate magnocellular pathway, from retina through V1, MT+, and MSTd. The model produces outputs which are qualitatively and quantitatively similar to human heading estimation data in response to complex natural scenes. The model estimates heading to within 1.5° in random dot or photo-realistically rendered scenes and within 3° in video streams from driving in real-world environments. Simulated rotations of less than 1 degree per second do not affect model performance, but faster simulated rotation rates deteriorate performance, as in humans. The model is part of a larger navigational system that identifies and tracks objects while navigating in cluttered environments.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National-Geospatial Intelligence Agency (NMA201-01-1-2016

    Motion synthesis for sports using unobtrusive lightweight body-worn and environment sensing

    Get PDF
    The ability to accurately achieve performance capture of athlete motion during competitive play in near real-time promises to revolutionise not only broadcast sports graphics visualisation and commentary, but also potentially performance analysis, sports medicine, fantasy sports and wagering. In this paper, we present a highly portable, non-intrusive approach for synthesising human athlete motion in competitive game-play with lightweight instru- mentation of both the athlete and field of play. Our data-driven puppetry technique relies on a pre-captured database of short segments of motion capture data to construct a motion graph augmented with interpolated mo- tions and speed variations. An athlete’s performed motion is synthesised by finding a related action sequence through the motion graph using a sparse set of measurements from the performance, acquired from both worn inertial and global location sensors. We demonstrate the efficacy of our approach in a challenging application scenario, with a high-performance tennis athlete wearing one or more lightweight body-worn accelerometers and a single overhead camera providing the athlete’s global position and orientation data. However, the approach is flexible in both the number and variety of input sensor data used. The technique can also be adopted for searching a motion graph efficiently in linear time in alternative applications

    MX-LSTM: mixing tracklets and vislets to jointly forecast trajectories and head poses

    Get PDF
    Recent approaches on trajectory forecasting use tracklets to predict the future positions of pedestrians exploiting Long Short Term Memory (LSTM) architectures. This paper shows that adding vislets, that is, short sequences of head pose estimations, allows to increase significantly the trajectory forecasting performance. We then propose to use vislets in a novel framework called MX-LSTM, capturing the interplay between tracklets and vislets thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation. At the same time, MX-LSTM predicts the future head poses, increasing the standard capabilities of the long-term trajectory forecasting approaches. With standard head pose estimators and an attentional-based social pooling, MX-LSTM scores the new trajectory forecasting state-of-the-art in all the considered datasets (Zara01, Zara02, UCY, and TownCentre) with a dramatic margin when the pedestrians slow down, a case where most of the forecasting approaches struggle to provide an accurate solution.Comment: 10 pages, 3 figures to appear in CVPR 201

    Learning and Production of Movement Sequences: Behavioral, Neurophysiological, and Modeling Perspectives

    Full text link
    A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.Defense Advanced Research Projects Agency/Office of Naval Research (N00014-95-1-0409); National Institute of Mental Health (R01 DC02852

    Moving in time: simulating how neural circuits enable rhythmic enactment of planned sequences

    Full text link
    Many complex actions are mentally pre-composed as plans that specify orderings of simpler actions. To be executed accurately, planned orderings must become active in working memory, and then enacted one-by-one until the sequence is complete. Examples include writing, typing, and speaking. In cases where the planned complex action is musical in nature (e.g. a choreographed dance or a piano melody), it appears to be possible to deploy two learned sequences at the same time, one composed from actions and a second composed from the time intervals between actions. Despite this added complexity, humans readily learn and perform rhythm-based action sequences. Notably, people can learn action sequences and rhythmic sequences separately, and then combine them with little trouble (Ullén & Bengtsson 2003). Related functional MRI data suggest that there are distinct neural regions responsible for the two different sequence types (Bengtsson et al. 2004). Although research on musical rhythm is extensive, few computational models exist to extend and inform our understanding of its neural bases. To that end, this article introduces the TAMSIN (Timing And Motor System Integration Network) model, a systems-level neural network model capable of performing arbitrary item sequences in accord with any rhythmic pattern that can be represented as a sequence of integer multiples of a base interval. In TAMSIN, two Competitive Queuing (CQ) modules operate in parallel. One represents and controls item order (the ORD module) and the second represents and controls the sequence of inter-onset-intervals (IOIs) that define a rhythmic pattern (RHY module). Further circuitry helps these modules coordinate their signal processing to enable performative output consistent with a desired beat and tempo.Accepted manuscrip
    corecore