1,886 research outputs found

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions

    Get PDF
    It is expected, and regionally observed, that energy demand will soon be covered by a widespread deployment of renewable energy sources. However, the weather and climate driven energy sources are characterized by a significant spatial and temporal variability. One of the commonly mentioned solutions to overcome the mismatch between demand and supply provided by renewable generation is a hybridization of two or more energy sources in a single power station (like wind-solar, solar-hydro or solar-wind-hydro). The operation of hybrid energy sources is based on the complementary nature of renewable sources. Considering the growing importance of such systems and increasing number of research activities in this area this paper presents a comprehensive review of studies which investigated, analyzed, quantified and utilized the effect of temporal, spatial and spatio-temporal complementarity between renewable energy sources. The review starts with a brief overview of available research papers, formulates detailed definition of major concepts, summarizes current research directions and ends with prospective future research activities. The review provides a chronological and spatial information with regard to the studies on the complementarity concept.Comment: 34 pages 7 figures 3 table

    Computational Intelligence for Modeling, Control, Optimization, Forecasting and Diagnostics in Photovoltaic Applications

    Get PDF
    This book is a Special Issue Reprint edited by Prof. Massimo Vitelli and Dr. Luigi Costanzo. It contains original research articles covering, but not limited to, the following topics: maximum power point tracking techniques; forecasting techniques; sizing and optimization of PV components and systems; PV modeling; reconfiguration algorithms; fault diagnosis; mismatching detection; decision processes for grid operators

    Forecasting of Photovoltaic Power Production

    Get PDF
    Solar irradiance and temperature are some weather parameters that affect the amount of power photovoltaic cells can generate. Based on these and past power production, future production can be predicted. Knowing" future generation may help the integration of this renewable energy source on an even larger scale than today, as well as optimize the use of them today. In this thesis, forecasting of future power generation was made by an artificial neural network (ANN) model, a support vector regression (SVR) model, an auto-regressive integrated moving average (ARIMA) model, a quantile regression neural network (QRNN) model, an ensemble model of ANN and SVR, an ANN ensemble model and an ANN model using only numerical weather predictions (NWPs) as inputs. Correlation techniques and principal component analysis were used for feature reduction for all models. The research questions for this thesis are, "How will the models perform using random train data to predict August 2021, compared to a random test sample? Will the ensemble models perform better than the standalone models, and will the quantile regression neural network make accurate prediction intervals? How well will the predictions be if the ANN model only uses NWP data as inputs, compared to both historical power and NWPs?". As well as to answer these questions, the objective of this thesis is to provide a model or multiple models that can accurately predict future power production for the PV power system in Lillesand. All models can predict future power production, but some with less accuracy than others. Of all models, as expected, both ensemble models performed best overall for both tests. The SVR model did however perform with the lowest MAE for the August test. For different fits, these results will probably slightly change, but it is expected that the ensemble models will still perform best overall
    • …
    corecore