24,438 research outputs found

    Solving Large Extensive-Form Games with Strategy Constraints

    Full text link
    Extensive-form games are a common model for multiagent interactions with imperfect information. In two-player zero-sum games, the typical solution concept is a Nash equilibrium over the unconstrained strategy set for each player. In many situations, however, we would like to constrain the set of possible strategies. For example, constraints are a natural way to model limited resources, risk mitigation, safety, consistency with past observations of behavior, or other secondary objectives for an agent. In small games, optimal strategies under linear constraints can be found by solving a linear program; however, state-of-the-art algorithms for solving large games cannot handle general constraints. In this work we introduce a generalized form of Counterfactual Regret Minimization that provably finds optimal strategies under any feasible set of convex constraints. We demonstrate the effectiveness of our algorithm for finding strategies that mitigate risk in security games, and for opponent modeling in poker games when given only partial observations of private information.Comment: Appeared in AAAI 201

    Imperfect-Recall Abstractions with Bounds in Games

    Full text link
    Imperfect-recall abstraction has emerged as the leading paradigm for practical large-scale equilibrium computation in incomplete-information games. However, imperfect-recall abstractions are poorly understood, and only weak algorithm-specific guarantees on solution quality are known. In this paper, we show the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilibria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our results are for a class of games that generalizes the only previously known class of imperfect-recall abstractions where any results had been obtained. Further, our analysis is tighter in two ways, each of which can lead to an exponential reduction in the solution quality error bound. We then show that for extensive-form games that satisfy certain properties, the problem of computing a bound-minimizing abstraction for a single level of the game reduces to a clustering problem, where the increase in our bound is the distance function. This reduction leads to the first imperfect-recall abstraction algorithm with solution quality bounds. We proceed to show a divide in the class of abstraction problems. If payoffs are at the same scale at all information sets considered for abstraction, the input forms a metric space. Conversely, if this condition is not satisfied, we show that the input does not form a metric space. Finally, we use these results to experimentally investigate the quality of our bound for single-level abstraction

    Deep Reinforcement Learning from Self-Play in Imperfect-Information Games

    Get PDF
    Many real-world applications can be described as large-scale games of imperfect information. To deal with these challenging domains, prior work has focused on computing Nash equilibria in a handcrafted abstraction of the domain. In this paper we introduce the first scalable end-to-end approach to learning approximate Nash equilibria without prior domain knowledge. Our method combines fictitious self-play with deep reinforcement learning. When applied to Leduc poker, Neural Fictitious Self-Play (NFSP) approached a Nash equilibrium, whereas common reinforcement learning methods diverged. In Limit Texas Holdem, a poker game of real-world scale, NFSP learnt a strategy that approached the performance of state-of-the-art, superhuman algorithms based on significant domain expertise.Comment: updated version, incorporating conference feedbac
    • …
    corecore