2,333 research outputs found

    On the Effect of Heterogeneity on the Dynamics and Performance of Dynamical Networks

    Get PDF
    The high cost of processor fabrication plants and approaching physical limits have started a new wave research in alternative computing paradigms. As an alternative to the top-down manufactured silicon-based computers, research in computing using natural and physical system directly has recently gained a great deal of interest. A branch of this research promotes the idea that any physical system with sufficiently complex dynamics is able to perform computation. The power of networks in representing complex interactions between many parts make them a suitable choice for modeling physical systems. Many studies used networks with a homogeneous structure to describe the computational circuits. However physical systems are inherently heterogeneous. We aim to study the effect of heterogeneity in the dynamics of physical systems that pertains to information processing. Two particularly well-studied network models that represent information processing in a wide range of physical systems are Random Boolean Networks (RBN), that are used to model gene interactions, and Liquid State Machines (LSM), that are used to model brain-like networks. In this thesis, we study the effects of function heterogeneity, in-degree heterogeneity, and interconnect irregularity on the dynamics and the performance of RBN and LSM. First, we introduce the model parameters to characterize the heterogeneity of components in RBN and LSM networks. We then quantify the effects of heterogeneity on the network dynamics. For the three heterogeneity aspects that we studied, we found that the effect of heterogeneity on RBN and LSM are very different. We find that in LSM the in-degree heterogeneity decreases the chaoticity in the network, whereas it increases chaoticity in RBN. For interconnect irregularity, heterogeneity decreases the chaoticity in LSM while its effects on RBN the dynamics depends on the connectivity. For {K} \u3c 2, heterogeneity in the interconnect will increase the chaoticity in the dynamics and for {K} \u3e 2 it decreases the chaoticity. We find that function heterogeneity has virtually no effect on the LSM dynamics. In RBN however, function heterogeneity actually makes the dynamics predictable as a function of connectivity and heterogeneity in the network structure. We hypothesize that node heterogeneity in RBN may help signal processing because of the variety of signal decomposition by different nodes

    Minimal approach to neuro-inspired information processing

    Get PDF
    © 2015 Soriano, Brunner, Escalona-Morán, Mirasso and Fischer. To learn and mimic how the brain processes information has been a major research challenge for decades. Despite the efforts, little is known on how we encode, maintain and retrieve information. One of the hypothesis assumes that transient states are generated in our intricate network of neurons when the brain is stimulated by a sensory input. Based on this idea, powerful computational schemes have been developed. These schemes, known as machine-learning techniques, include artificial neural networks, support vector machine and reservoir computing, among others. In this paper, we concentrate on the reservoir computing (RC) technique using delay-coupled systems. Unlike traditional RC, where the information is processed in large recurrent networks of interconnected artificial neurons, we choose a minimal design, implemented via a simple nonlinear dynamical system subject to a self-feedback loop with delay. This design is not intended to represent an actual brain circuit, but aims at finding the minimum ingredients that allow developing an efficient information processor. This simple scheme not only allows us to address fundamental questions but also permits simple hardware implementations. By reducing the neuro-inspired reservoir computing approach to its bare essentials, we find that nonlinear transient responses of the simple dynamical system enable the processing of information with excellent performance and at unprecedented speed. We specifically explore different hardware implementations and, by that, we learn about the role of nonlinearity, noise, system responses, connectivity structure, and the quality of projection onto the required high-dimensional state space. Besides the relevance for the understanding of basic mechanisms, this scheme opens direct technological opportunities that could not be addressed with previous approaches.The authors acknowledge support by MINECO (Spain) under Projects TEC2012-36335 (TRIPHOP) and FIS2012-30634 (Intense@cosyp), FEDER and Govern de les Illes Balears via the program Grups Competitius. The work of MS was supported by the Conselleria d'Educació, Cultura i Universitats del Govern de les Illes Balears and the European Social Fund.Peer Reviewe

    Reconstruction of three-dimensional porous media using generative adversarial neural networks

    Full text link
    To evaluate the variability of multi-phase flow properties of porous media at the pore scale, it is necessary to acquire a number of representative samples of the void-solid structure. While modern x-ray computer tomography has made it possible to extract three-dimensional images of the pore space, assessment of the variability in the inherent material properties is often experimentally not feasible. We present a novel method to reconstruct the solid-void structure of porous media by applying a generative neural network that allows an implicit description of the probability distribution represented by three-dimensional image datasets. We show, by using an adversarial learning approach for neural networks, that this method of unsupervised learning is able to generate representative samples of porous media that honor their statistics. We successfully compare measures of pore morphology, such as the Euler characteristic, two-point statistics and directional single-phase permeability of synthetic realizations with the calculated properties of a bead pack, Berea sandstone, and Ketton limestone. Results show that GANs can be used to reconstruct high-resolution three-dimensional images of porous media at different scales that are representative of the morphology of the images used to train the neural network. The fully convolutional nature of the trained neural network allows the generation of large samples while maintaining computational efficiency. Compared to classical stochastic methods of image reconstruction, the implicit representation of the learned data distribution can be stored and reused to generate multiple realizations of the pore structure very rapidly.Comment: 21 pages, 20 figure
    • …
    corecore