10,533 research outputs found

    Air Quality Prediction in Smart Cities Using Machine Learning Technologies Based on Sensor Data: A Review

    Get PDF
    The influence of machine learning technologies is rapidly increasing and penetrating almost in every field, and air pollution prediction is not being excluded from those fields. This paper covers the revision of the studies related to air pollution prediction using machine learning algorithms based on sensor data in the context of smart cities. Using the most popular databases and executing the corresponding filtration, the most relevant papers were selected. After thorough reviewing those papers, the main features were extracted, which served as a base to link and compare them to each other. As a result, we can conclude that: (1) instead of using simple machine learning techniques, currently, the authors apply advanced and sophisticated techniques, (2) China was the leading country in terms of a case study, (3) Particulate matter with diameter equal to 2.5 micrometers was the main prediction target, (4) in 41% of the publications the authors carried out the prediction for the next day, (5) 66% of the studies used data had an hourly rate, (6) 49% of the papers used open data and since 2016 it had a tendency to increase, and (7) for efficient air quality prediction it is important to consider the external factors such as weather conditions, spatial characteristics, and temporal features

    Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRRAK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation monitoring. The volcano source location at Westdahl is determined to be approx. 7 km below sea level and approx. 3.5 km north of the Westdahl peak. This study demonstrates that Fisher caldera has had continuous subsidence over more than 10 years and there is no evident deformation signal around Shishaldin peak.Chapter 1. Performance of the High Resolution Atmospheric Model HRRR-AK for Correcting Geodetic Observations from Spaceborne Radars -- Chapter 2. Robust atmospheric filtering of InSAR data based on numerical weather prediction models -- Chapter 3. Subtle motion long term monitoring of Unimak Island from 2003 to 2010 by advanced time series SAR interferometry -- Chapter 4. Conclusion and future work

    Realtime Profiling of Fine-Grained Air Quality Index Distribution using UAV Sensing

    Full text link
    Given significant air pollution problems, air quality index (AQI) monitoring has recently received increasing attention. In this paper, we design a mobile AQI monitoring system boarded on unmanned-aerial-vehicles (UAVs), called ARMS, to efficiently build fine-grained AQI maps in realtime. Specifically, we first propose the Gaussian plume model on basis of the neural network (GPM-NN), to physically characterize the particle dispersion in the air. Based on GPM-NN, we propose a battery efficient and adaptive monitoring algorithm to monitor AQI at the selected locations and construct an accurate AQI map with the sensed data. The proposed adaptive monitoring algorithm is evaluated in two typical scenarios, a two-dimensional open space like a roadside park, and a three-dimensional space like a courtyard inside a building. Experimental results demonstrate that our system can provide higher prediction accuracy of AQI with GPM-NN than other existing models, while greatly reducing the power consumption with the adaptive monitoring algorithm

    Design and validation of novel methods for long-term road traffic forecasting

    Get PDF
    132 p.Road traffic management is a critical aspect for the design and planning of complex urban transport networks for which vehicle flow forecasting is an essential component. As a testimony of its paramount relevance in transport planning and logistics, thousands of scientific research works have covered the traffic forecasting topic during the last 50 years. In the beginning most approaches relied on autoregressive models and other analysis methods suited for time series data. During the last two decades, the development of new technology, platforms and techniques for massive data processing under the Big Data umbrella, the availability of data from multiple sources fostered by the Open Data philosophy and an ever-growing need of decision makers for accurate traffic predictions have shifted the spotlight to data-driven procedures. Even in this convenient context, with abundance of open data to experiment and advanced techniques to exploit them, most predictive models reported in literature aim for shortterm forecasts, and their performance degrades when the prediction horizon is increased. Long-termforecasting strategies are more scarce, and commonly based on the detection and assignment to patterns. These approaches can perform reasonably well unless an unexpected event provokes non predictable changes, or if the allocation to a pattern is inaccurate.The main core of the work in this Thesis has revolved around datadriven traffic forecasting, ultimately pursuing long-term forecasts. This has broadly entailed a deep analysis and understanding of the state of the art, and dealing with incompleteness of data, among other lesser issues. Besides, the second part of this dissertation presents an application outlook of the developed techniques, providing methods and unexpected insights of the local impact of traffic in pollution. The obtained results reveal that the impact of vehicular emissions on the pollution levels is overshadowe

    Worldwide Weather Forecasting by Deep Learning

    Get PDF
    La prévision météorologique a été et demeure une tâche ardue ayant été approchée sous plusieurs angles au fil des années. Puisque les modèles proéminents récents sont souvent des modèles d’appentissage machine, l’importance de la disponibilité, de la quantité et de la qualité des données météorologiques augmente. De plus, la revue des proéminents modèles d’apprentissage profond appliqués à la prédiction de séries chronologiques météorologiques suggère que leur principale limite est la formulation et la structure des données qui leur sont fournies en entrée, ce qui restreint la portée et la complexité des problèmes qu’ils tentent de résoudre. À cet effet, cette recherche fournit une solution, l’algorithme d’interpolation géospatiale SkNNI (interpolation des k plus proches voisins sphérique), pour transformer et structurer les données géospatiales disparates de manière à les rendre utiles pour entraîner des modèles prédictifs. SkNNI se démarque des algorithmes d’interpolation géospatiale communs, principalement de par sa forte robustesse aux données d’observation bruitées ainsi que sa considération accrue des voisinages d’interpolation. De surcroît, à travers la conception, l’entraînement et l’évaluation de l’architecture de réseau de neurones profond DeltaNet, cette recherche démontre la faisabilité et le potentiel de la prédiction météorologique multidimensionnelle mondiale par apprentissage profond. Cette approche fait usage de SkNNI pour prétraiter les données météorologiques en les transformant en cartes géospatiales à multiples canaux météorologiques qui sont organisées et utilisées en tant qu’éléments de séries chronologiques. Ce faisant, le recours à de telles cartes géospatiales ouvre de nouveaux horizons quant à la définition et à la résolution de problèmes de prévisions géospatiales (p. ex. météorologiques) plus complexes. ----------ABSTRACT: Weather forecasting has been and still is a challenging task which has been approached from many angles throughout the years. Since recent state-of-the-art models are often machine learning ones, the importance of weather data availability, quantity and quality rises. Also, the review of prominent deep learning models for weather time series forecasting suggests their main limitation is the formulation and structure of their input data, which restrains the scope and complexity of the problems they attempt to solve. As such, this work provides a solution, the spherical k-nearest neighbors interpolation (SkNNI) algorithm, to transform and structure scattered geospatial data in a way that makes it useful for predictive model training. SkNNI shines when compared to other common geospatial interpolation methods, mainly because of its high robustness to noisy observation data and acute interpolation neighborhood awareness. Furthermore, through the design, training and evaluation of the DeltaNet deep neural network architecture, this work demonstrates the feasibility and potential of multidimensional worldwide weather forecasting by deep learning. This approach leverages SkNNI to preprocess weather data into multi-channel geospatial weather frames, which are then organized and used as time series elements. Thus, working with such geospatial frames opens new avenues to define and solve more complex geospatial (e.g. weather) forecasting problems

    Design and validation of novel methods for long-term road traffic forecasting

    Get PDF
    132 p.Road traffic management is a critical aspect for the design and planning of complex urban transport networks for which vehicle flow forecasting is an essential component. As a testimony of its paramount relevance in transport planning and logistics, thousands of scientific research works have covered the traffic forecasting topic during the last 50 years. In the beginning most approaches relied on autoregressive models and other analysis methods suited for time series data. During the last two decades, the development of new technology, platforms and techniques for massive data processing under the Big Data umbrella, the availability of data from multiple sources fostered by the Open Data philosophy and an ever-growing need of decision makers for accurate traffic predictions have shifted the spotlight to data-driven procedures. Even in this convenient context, with abundance of open data to experiment and advanced techniques to exploit them, most predictive models reported in literature aim for shortterm forecasts, and their performance degrades when the prediction horizon is increased. Long-termforecasting strategies are more scarce, and commonly based on the detection and assignment to patterns. These approaches can perform reasonably well unless an unexpected event provokes non predictable changes, or if the allocation to a pattern is inaccurate.The main core of the work in this Thesis has revolved around datadriven traffic forecasting, ultimately pursuing long-term forecasts. This has broadly entailed a deep analysis and understanding of the state of the art, and dealing with incompleteness of data, among other lesser issues. Besides, the second part of this dissertation presents an application outlook of the developed techniques, providing methods and unexpected insights of the local impact of traffic in pollution. The obtained results reveal that the impact of vehicular emissions on the pollution levels is overshadowe

    Weather and Climate Information for Tourism

    Get PDF
    The tourism sector is one of the largest and fastest growing global industries and is a significant contributor to national and local economies around the world. The interface between climate and tourism is multifaceted and complex, as climate represents both a vital resource to be exploited and an important limiting factor that poses risks to be managed by the tourism industry and tourists alike. All tourism destinations and operators are climate-sensitive to a degree and climate is a key influence on travel planning and the travel experience. This chapter provides a synopsis of the capacities and needs for climate services in the tourism sector, including current and emerging applications of climate services by diverse tourism end-users, and a discussion of key knowledge gaps, research and capacity-building needs and partnerships that are required to accelerate the application of climate information to manage risks to climate variability and facilitate successful adaptation to climate change

    Weather and Climate Information for Tourism

    Get PDF
    The tourism sector is one of the largest and fastest growing global industries and is a significant contributor to national and local economies around the world. The interface between climate and tourism is multifaceted and complex, as climate represents both a vital resource to be exploited and an important limiting factor that poses risks to be managed by the tourism industry and tourists alike. All tourism destinations and operators are climate-sensitive to a degree and climate is a key influence on travel planning and the travel experience. This chapter provides a synopsis of the capacities and needs for climate services in the tourism sector, including current and emerging applications of climate services by diverse tourism end-users, and a discussion of key knowledge gaps, research and capacity-building needs and partnerships that are required to accelerate the application of climate information to manage risks to climate variability and facilitate successful adaptation to climate change

    Weather and Climate Information for Tourism

    Get PDF
    The tourism sector is one of the largest and fastest growing global industries and is a significant contributor to national and local economies around the world. The interface between climate and tourism is multifaceted and complex, as climate represents both a vital resource to be exploited and an important limiting factor that poses risks to be managed by the tourism industry and tourists alike. All tourism destinations and operators are climate-sensitive to a degree and climate is a key influence on travel planning and the travel experience. This chapter provides a synopsis of the capacities and needs for climate services in the tourism sector, including current and emerging applications of climate services by diverse tourism end-users, and a discussion of key knowledge gaps, research and capacity-building needs and partnerships that are required to accelerate the application of climate information to manage risks to climate variability and facilitate successful adaptation to climate change

    Spatial and Temporal Analysis of Big Dataset on PM2.5 Air Pollution in Beijing, China, 2014 to 2018

    Get PDF
    Air particulate matter (PM2.5) pollution is a critical environment problem worldwide and also in Beijing, China. We gathered five-year PM2.5 contaminate concentrations from 2014 to 2018, from the Beijing Municipal Environmental Monitoring Center and China Air Quality Real-time Distribution Platform. This is a big dataset, and we collected with crawler technology from Python programming. After examining the quality of the recorded data, we determined to conduct the temporal and spatial analysis using 27 observation stations located in both urban and suburb area in the municipality of Beijing. The big dataset of five-year hourly PM2.5 concentrations was sorted to actionable datasets (Selected Datasets and Seasonal Average Selected Datasets) with the help of Python programming. Linear Regression based Fundamental Data Analysis was conducted as the first part of temporal analysis in R studio to gather the temporal patterns of five-year seasonal PM2.5 contaminant concentrations on each observation sites. As the second part of temporal analysis, the Principal Component Analysis (PCA) was conducted in MATLAB to gather the patterns of variations of entire five-year PM2.5 contaminant concentration on each of the sites. Geographic Information System (GIS) was utilized to study the spatial pattern of air pollution distribution from the selected 27 observation sites during selected time periods. The results of this research are, 1) PM2.5 pollutions in winter are the most severe or the highest in each of the natural years. 2) PM2.5 pollution concentrations in Beijing were gradually decrease during 2014 to 2018. 3) In terms of a five-year time perspective, the improvements of air quality and reduction of PM2.5 contaminant appeared in all the seasons based on Fundamental Data Analysis. 4) PM2.5 contaminant concentrations in summer are significantly less than other seasons. 5) The least PM2.5 pollutant influenced area is north and northwest regions in Beijing, and the most PM2.5 pollutant influenced area is south and southeast areas in Beijing. 6) Vehicle concentration and traffic congestion is not the significant impact factor of PM2.5 pollutions in Beijing. 7) Heating supply of buildings and houses generated great contributions to the PM2.5 contaminant concentration in Beijing. While, in the background of rigorous emission reduction policy and management operations by the municipal government, contribution of heating supplies is gradually decreasing. 8) Human activities have limited contributions to the PM2.5 contaminants in Beijing. Meanwhile, type and quantity of fossil fuel energy consumptions might contribute large amount of air pollutions
    • …
    corecore