354 research outputs found

    Identifying Metrical and Temporal Structure With an Autocorrelation Phase Matrix

    Full text link

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    On the Application of PSpice for Localised Cloud Security

    Get PDF
    The work reported in this thesis commenced with a review of methods for creating random binary sequences for encoding data locally by the client before storing in the Cloud. The first method reviewed investigated evolutionary computing software which generated noise-producing functions from natural noise, a highly-speculative novel idea since noise is stochastic. Nevertheless, a function was created which generated noise to seed chaos oscillators which produced random binary sequences and this research led to a circuit-based one-time pad key chaos encoder for encrypting data. Circuit-based delay chaos oscillators, initialised with sampled electronic noise, were simulated in a linear circuit simulator called PSpice. Many simulation problems were encountered because of the nonlinear nature of chaos but were solved by creating new simulation parts, tools and simulation paradigms. Simulation data from a range of chaos sources was exported and analysed using Lyapunov analysis and identified two sources which produced one-time pad sequences with maximum entropy. This led to an encoding system which generated unlimited, infinitely-long period, unique random one-time pad encryption keys for plaintext data length matching. The keys were studied for maximum entropy and passed a suite of stringent internationally-accepted statistical tests for randomness. A prototype containing two delay chaos sources initialised by electronic noise was produced on a double-sided printed circuit board and produced more than 200 Mbits of OTPs. According to Vladimir Kotelnikov in 1941 and Claude Shannon in 1945, one-time pad sequences are theoretically-perfect and unbreakable, provided specific rules are adhered to. Two other techniques for generating random binary sequences were researched; a new circuit element, memristance was incorporated in a Chua chaos oscillator, and a fractional-order Lorenz chaos system with order less than three. Quantum computing will present many problems to cryptographic system security when existing systems are upgraded in the near future. The only existing encoding system that will resist cryptanalysis by this system is the unconditionally-secure one-time pad encryption

    Automated generation of movie tributes

    Get PDF
    O objetivo desta tese é gerar um tributo a um filme sob a forma de videoclip, considerando como entrada um filme e um segmento musical coerente. Um tributo é considerado um vídeo que contém os clips mais significativos de um filme, reproduzidos sequencialmente, enquanto uma música toca. Nesta proposta, os clips a constar do tributo final são o resultado da sumarização das legendas do filme com um algoritmo de sumarização genérico. É importante que o artefacto seja coerente e fluido, pelo que há a necessidade de haver um equilíbrio entre a seleção de conteúdo importante e a seleção de conteúdo que esteja em harmonia com a música. Para tal, os clips são filtrados de forma a garantir que apenas aqueles que contêm a mesma emoção da música aparecem no vídeo final. Tal é feito através da extração de vetores de características áudio relacionadas com emoções das cenas às quais os clips pertencem e da música, e, de seguida, da sua comparação por meio do cálculo de uma medida de distância. Por fim, os clips filtrados preenchem a música cronologicamente. Os resultados foram positivos: em média, os tributos produzidos obtiveram 7 pontos, numa escala de 0 a 10, em critérios como seleção de conteúdo e coerência emocional, fruto de avaliação humana.This thesis’ purpose is to generate a movie tribute in the form of a videoclip for a given movie and music. A tribute is considered to be a video containing meaningful clips from the movie playing along with a cohesive music piece. In this work, we collect the clips by summarizing the movie subtitles with a generic summarization algorithm. It is important that the artifact is coherent and fluid, hence there is the need to balance between the selection of important content and the selection of content that is in harmony with the music. To achieve so, clips are filtered so as to ensure that only those that contain the same emotion as the music are chosen to appear in the final video. This is made by extracting vectors of emotion-related audio features from the scenes they belong to and from the music, and then comparing them with a distance measure. Finally, filtered clips fill the music length in a chronological order. Results were positive: on average, the produced tributes obtained scores of 7, on a scale from 0 to 10, on content selection, and emotional coherence criteria, from human evaluation

    Rhythmic analysis of motion signals for music retrieval

    Get PDF
    viii, 108 leaves : ill. (chiefly col.) ; 29 cm.Includes abstract and appendix.Includes bibliographical references (leaves 100-108).This thesis presents a framework that queries a music database with rhythmic motion signals. Rather than the existing method to extract the motion signal's underlying rhythm by marking salient frames, this thesis proposes a novel approach, which converts the rhythmic motion signal to MIDI-format music and extracts its beat sequence as the rhythmic information of that motion. We extract "motion events" from the motion data based on characteristics such as movement directional change, root-y coordinate and angular-velocity. Those events are converted to music notes in order to generate an audio representation of the motion. Both this motion-generated music and the existing audio library are analyzed by a beat tracking algorithm. The music retrieval is completed based on the extracted beat sequences. We tried three approaches to retrieve music using motion queries, which are a mutual-information-based approach, two sample KS test and a rhythmic comparison algorithm. Feasibility of the framework is evaluated with pre-recorded music and motion recordings

    An Information-Theoretical Method for Comparing Completions of Contrapunctus XIV from Bach’s Art of Fugue

    Get PDF
    The unfinished final Contrapunctus from Bach’s posthumously-published Kunst der Fuge has received several dozen completions over the past century. Although the majority of these have been published and recorded, none has yet established themselves as the leading solution among performers, and this may have more to do with their perceived ‘Bach-ness’ than the undoubted contrapuntal skill and ingenuity that they each demonstrate. This study uses an established information-theoretical method drawn from mathematics to explore the extent to which it is possible to ‘measure’ the similarity of these reconstructions to the original, and so determine which are closest to the musical lines of Bach’s existing opening of Contrapunctus XIV

    Object Tracking from Audio and Video data using Linear Prediction method

    Get PDF
    Microphone arrays and video surveillance by camera are widely used for detection and tracking of a moving speaker. In this project, object tracking was planned using multimodal fusion i.e., Audio-Visual perception. Source localisation can be done by GCC-PHAT, GCC-ML for time delay estimation delay estimation. These methods are based on spectral content of the speech signals that can be effected by noise and reverberation. Video tracking can be done using Kalman filter or Particle filter. Therefore Linear Prediction method is used for audio and video tracking. Linear prediction in source localisation use features related to excitation source information of speech which are less effected by noise. Hence by using this excitation source information, time delays are estimated and the results are compared with GCC PHAT method. The dataset obtained from [20] is used in video tracking a single moving object captured through stationary camera. Then for object detection, projection histogram is done followed by linear prediction for tracking and the corresponding results are compared with Kalman filter method

    Towards music perception by redundancy reduction and unsupervised learning in probabilistic models

    Get PDF
    PhDThe study of music perception lies at the intersection of several disciplines: perceptual psychology and cognitive science, musicology, psychoacoustics, and acoustical signal processing amongst others. Developments in perceptual theory over the last fifty years have emphasised an approach based on Shannon’s information theory and its basis in probabilistic systems, and in particular, the idea that perceptual systems in animals develop through a process of unsupervised learning in response to natural sensory stimulation, whereby the emerging computational structures are well adapted to the statistical structure of natural scenes. In turn, these ideas are being applied to problems in music perception. This thesis is an investigation of the principle of redundancy reduction through unsupervised learning, as applied to representations of sound and music. In the first part, previous work is reviewed, drawing on literature from some of the fields mentioned above, and an argument presented in support of the idea that perception in general and music perception in particular can indeed be accommodated within a framework of unsupervised learning in probabilistic models. In the second part, two related methods are applied to two different low-level representations. Firstly, linear redundancy reduction (Independent Component Analysis) is applied to acoustic waveforms of speech and music. Secondly, the related method of sparse coding is applied to a spectral representation of polyphonic music, which proves to be enough both to recognise that the individual notes are the important structural elements, and to recover a rough transcription of the music. Finally, the concepts of distance and similarity are considered, drawing in ideas about noise, phase invariance, and topological maps. Some ecologically and information theoretically motivated distance measures are suggested, and put in to practice in a novel method, using multidimensional scaling (MDS), for visualising geometrically the dependency structure in a distributed representation.Engineering and Physical Science Research Counci

    Automatic Drum Transcription and Source Separation

    Get PDF
    While research has been carried out on automated polyphonic music transcription, to-date the problem of automated polyphonic percussion transcription has not received the same degree of attention. A related problem is that of sound source separation, which attempts to separate a mixture signal into its constituent sources. This thesis focuses on the task of polyphonic percussion transcription and sound source separation of a limited set of drum instruments, namely the drums found in the standard rock/pop drum kit. As there was little previous research on polyphonic percussion transcription a broad review of music information retrieval methods, including previous polyphonic percussion systems, was also carried out to determine if there were any methods which were of potential use in the area of polyphonic drum transcription. Following on from this a review was conducted of general source separation and redundancy reduction techniques, such as Independent Component Analysis and Independent Subspace Analysis, as these techniques have shown potential in separating mixtures of sources. Upon completion of the review it was decided that a combination of the blind separation approach, Independent Subspace Analysis (ISA), with the use of prior knowledge as used in music information retrieval methods, was the best approach to tackling the problem of polyphonic percussion transcription as well as that of sound source separation. A number of new algorithms which combine the use of prior knowledge with the source separation abilities of techniques such as ISA are presented. These include sub-band ISA, Prior Subspace Analysis (PSA), and an automatic modelling and grouping technique which is used in conjunction with PSA to perform polyphonic percussion transcription. These approaches are demonstrated to be effective in the task of polyphonic percussion transcription, and PSA is also demonstrated to be capable of transcribing drums in the presence of pitched instruments

    Neural synchronization is strongest to the spectral flux of slow music and depends on familiarity and beat salience

    Get PDF
    Neural activity in the auditory system synchronizes to sound rhythms, and brain–environment synchronization is thought to be fundamental to successful auditory perception. Sound rhythms are often operationalized in terms of the sound’s amplitude envelope. We hypothesized that – especially for music – the envelope might not best capture the complex spectro-temporal fluctuations that give rise to beat perception and synchronized neural activity. This study investigated (1) neural synchronization to different musical features, (2) tempo-dependence of neural synchronization, and (3) dependence of synchronization on familiarity, enjoyment, and ease of beat perception. In this electroencephalography study, 37 human participants listened to tempo-modulated music (1–4 Hz). Independent of whether the analysis approach was based on temporal response functions (TRFs) or reliable components analysis (RCA), the spectral flux of music – as opposed to the amplitude envelope – evoked strongest neural synchronization. Moreover, music with slower beat rates, high familiarity, and easy-to-perceive beats elicited the strongest neural response. Our results demonstrate the importance of spectro-temporal fluctuations in music for driving neural synchronization, and highlight its sensitivity to musical tempo, familiarity, and beat salience
    corecore